FUNCTIONS AND INVERSES OF FUNCTIONS

Unit Overview

The unit begins with basic function concepts: functions as relations, domain, range, and evaluating functions. The unit continues with finding the inverse of functions, and determining whether the inverse of a function is a function.

Review of Functions

Relation: a relationship between two variables such that each value of the first variable is paired with one or more values of the second variable; a set of ordered pairs.

Example \#1: $\{(2,4),(-4,5),(2,-7),(0,9)\}$
Function: a relationship between two variables such that each value of the first is paired with exactly one value of the second variable; all domain values (x-values) are different.

Example \#2: $\{(2,4),(0,6),(7,4),(-9,4)\}$
Domain: the set of all possible values of the first variable (all x-values)
From example \#2 above: domain $=\{2,0,7,-9\}$
Range: the set of all possible values of the second variable (all y-values)
From example \#2 above: range $=\{4,6\}$

Vertical Line Test: If every vertical line intersects a given graph at no more than one point, then the graph represents a function.

The vertical lines intersect the graph at more than one point; therefore, it is NOTa function.

Function Notation: If there is a correspondence between values of the domain, x, and values of the range, y, that is a function; then $y=f(x)$, and (x, y) can be written as $(x, f(x))$.
$f(x)$ is read " f of x ". The number represented by $f(x)$ is the value of the function f at x.
The variable \boldsymbol{x} is called the independent variable and the variable \boldsymbol{y}, or $\boldsymbol{f}(\boldsymbol{x})$, is called the dependent variable.

To evaluate a function for a specific variable, replace x with the given value and solve.
Example \#3: Evaluate $f(x)=-1.2 x^{2}+-4 x-3$ for $x=1$.

$$
\begin{aligned}
& f(x)=-1.2 x^{2}+-4 x-3 \\
& f(1)=-1.2(1)^{2}+4(1)-3 \\
& f(1)=-1.2+4-3 \\
& f(1)=-0.2
\end{aligned}
$$

When $x=1$, the value of $f(x)=-0.2$

Example \#4: Evaluate $g(x)=3 x^{2}-x+1$ for $x=4$.
*Note: Other letters may be used when denoting functions.

$$
\begin{aligned}
& g(4)=3(4)^{2}-4+1 \\
& g(4)=3(16)-4+1 \\
& g(4)=48-4+1 \\
& g(4)=45
\end{aligned}
$$

When $x=4$, the value of $g(x)=45$.

Stop! Go to Questions \#1-8 about this section, then return to continue on to the next section.

I nverses of Functions

The inverse of a relation consisting of the ordered pairs (x, y) is the set of all ordered pairs (y, x). (switch the x and y) An inverse is just a matter of reversing the x and y coordinates.

Consider the relation $\{(1,2),(4,-2),(3,2)\}$.

- The domain of the relation is $\{1,4,3\}$ and the range of the relation is $\{-2,2\}$.
- The relation is a function because each domain value is paired with exactly one range value.

To find the inverse of the relation, switch the x any y values.

- The point $(1,2)$ becomes the point $(2,1)$.
- The point $(4,-2)$ becomes the point $(-2,4)$.
- The point $(3,2)$ becomes the point $(2,3)$.
- The inverse is $\{(2,1),(-2,4),(2,3)\}$.
- The domain of the inverse is $\{2,-2\}$.
- The range of the inverse is $\{1,4,3\}$.
*The relation is a function but the inverse is NOT a function because the domain value 2 is paired with two range values. $\{(2,1),(-2,4),(2,3)\}$.

The range of a relation is the domain of the inverse. The domain of a relation is the range of the inverse. Domain and range for the inverse just switch what they were from the original function. The inverse of a function may or may not be a function.

Let's consider the points in the table.

x	y
0	0
1	1
2	4
3	9

Is the relation a function?

Answer: The relation IS a function since each domain value (x) is paired with exactly one range value (y).

$$
\begin{aligned}
& 0 \longrightarrow 0 \\
& 1 \longrightarrow 1 \\
& 2 \longrightarrow 4 \\
& 3 \longrightarrow 9
\end{aligned}
$$

We denote the relation in function notation as $f(x)$ since it is a function.

x	$f(x)$
0	0
1	1
2	4
3	9

Is the inverse of $f(x)$ a function?

x	$f(x)$
0	0
1	1
2	4
3	9

$\xrightarrow{\text { Switch the domain and range. }}$

x	$f^{-1}(x)$
0	0
1	1
4	2
9	3

* The inverse of a function f is denoted by f^{-1}. This is read as " f inverse" or "the inverse of f."

Answer: The inverse of the function IS a function also because each domain value is paired with exactly one range value.

Domain and Range of the I nverse

If a function $f(x)$ has an inverse $g(x)$, all of the domain values (x-values) in $f(x)$ are the range values (y-values) in $g(x)$ and all of the range values (y-values) in $f(x)$ are the domain values (x-values in $g(x)$).

For example, given the function $f(x)=x+2$, notice that point $(1,3)$ in $f(x)$ becomes point $(3,1)$ on $g(x)$. We get this by $f(1)=1+2=3$; therefore, $(1,3)$ is a point for $f(x)$. To get the inverse, we swap the x and y values to get $(3,1)$.

What point on $g(x)$ is the inverse of point $(0,1)$ on $f(x)$?
"Click here" to check your answer.
The reflected point is $(1,0)$.

In general, any point (x, y) in $f(x)$ becomes what ordered pair in its inverse, $g(x)$?
"Click here" to check your answer.

$$
(y, x)
$$

Stop! Go to Questions \#9-16 about this section, then return to continue on to the next section.

If a function is defined by an equation, then the inverse of the function is found by switching the x and y in the equation, and then solving the new equation for y. To find the inverse equation, simply switch the variables x and y around as in example \#1 below.

Example \#1: $\quad y=3 x-2$
$x=3 y-2 \quad$ Switch the x and y.
$x+2=3 y \quad$ Add 2 to each side.
$\frac{x+2}{3}=y \quad$ Divide each side by 3.
$\frac{1}{3} x+\frac{2}{3}=y \quad$ Write $\frac{(1) x+2}{3}$ as two fractions.

The inverse of $y=3 x-2$ is $y=\frac{1}{3} x+\frac{2}{3}$.

Sometimes, the equation is written in function notation as in the following two examples. To keep the computations simple, we remember that $f(x)$ can be written as y and vice versa.

Example \#2: Find the inverse $f(x)=\frac{x+8}{4}$

$$
\begin{array}{ll}
f(x)=\frac{x+8}{4} & \\
y=\frac{x+8}{4} & f(x) \text { can be written as } y . \\
x=\frac{y+8}{4} & \text { Switch the } x \text { and } y .
\end{array}
$$

$$
4 x=y+8 \quad \text { Multiply each side by } 4\left(\frac{y+8}{A_{1}} \cdot \frac{\not A^{1}}{1}=\frac{y+8}{1}=y+8\right) .
$$

$$
4 x-8=y \quad \text { Subtract } 8 \text { from each side. }
$$

The inverse function of $f(x)=\frac{x+8}{4}$ is $y=4 x-8$.
*The inverse of a function f is denoted by f^{-1}. This is read as " f inverse" or "the inverse of f."

Thus, we can state that $f^{-1}(x)=4 x-8$ is the inverse of $f(x)=\frac{x+8}{4}$.

Example \#3a: Find the inverse of $f(x)=x+5$.
$f(x)=x+5$
$y=x+5 \quad f(x)$ can be written as y.
$x=y+5 \quad$ Switch the x and y.
$x-5=y \quad$ Subtract 5 from both sides.
The inverse function of $f(x)=x+5$ is $y=x-5$.
*The inverse of a function f is denoted by f^{-1}.
Therefore, $f^{-1}(x)=x-5$ is the inverse of $f(x)=x+5$.

Example \#3b: Using $f(x)=x+5$ from example \#3a, find $f(9)$ and the inverse point.
Plug 9 into $f(x) . \quad f(9)=9+5=14$. This yields the point $(9,14)$.
To find the inverse, just switch x and y. $(9,14)$ becomes $(14,9)$.
You can check this by plugging this point into the inverse function $f^{-1}(x)=x-5$.
$f(14)=14-5=9$.
"Click here" to check your answer.

Answer: (-6, 2)

Try this! Find the inverse of $f(x)=x-19$.

"Click here" to check your answer.

Answer: $y=x+19$
Switch x and $y \rightarrow x=y-19$
Solve for $y . x+19=y$

Find $f^{-1}(8)$ for the previous function.
"Click here" to check your answer.
Answer: 27
The inverse function was $y=x+19$ $8+19=27$
(6) Try this! Find the inverse of $f(x)=\frac{2 x-6}{8}$.
"Click here" to check your answer.

Answer : $f^{-1}(x)=4 x+3$
Solution : $y=\frac{2 x-6}{8}$
Switch x and $y: x=\frac{2 y-6}{8}$
Solve for y : Multiply both sides by 8 . $8 x=2 y-6$
Add 6 to both sides. $8 x+6=2 y$
Divide both sides by 2 (each term). $\quad 4 x+3=y$
So, $y=4 x+3$ or $f^{-1}(x)=4 x+3$

Example \#4: Find the inverse of $y=(x+2)^{2}-5$.
First, switch the x and y variables. $x=(y+2)^{2}-5$

Next, solve for y. Add 5 to both sides.
$x+5=(y+2)^{2}$

Now, take the square root of both sides.
$\pm \sqrt{x+5}=\sqrt{(y+2)^{2}}$
$\pm \sqrt{x+5}=y+2$
Now, subtract 2 from both sides to isolate y by itself.

$$
\pm \sqrt{x+5}-2=y
$$

This could also be written as $y=-2 \pm \sqrt{x+5}$.

Example \#5: Are $y=2 x+4$ and $y=\frac{x}{2}-2$ inverses of each other?
To find this out, we need to find the inverse of the original function and see if it matches the one given. We start with $y=2 x+4$. First, find the inverse. Remember, just switch the x and y variables.
$x=2 y+4$

Now, solve for y. First, subtract 4 from both sides.
$x-4=2 y$
Now, divide everything by 2.
$\frac{x}{2}-\frac{4}{2}=\frac{2 y}{2}$

Simplify. $\frac{x}{2}-2=y$
Does this yield the same inverse given in the problem? Yes. Therefore, $y=2 x+4$ and $y=\frac{1}{2} x-2$ are inverses.

