DI STANCE AND MI DPONT FORMULAS; CI RCLES

Parabola

Circle

Ellipse

Hyperbola

Unit Overview

In this unit you will begin to investigate the conic sections. The conics are curves formed by the intersection of a plane and a double-napped cone. There are four types of conic sections: a parabola, a circle, an ellipse, and a hyperbola. A diagram of a double-napped cone is given below. A double napped-cone has two cones with the points touching. Notice how slicing the double-napped cone at different angles produces different conic sections. In this unit you will find the distance between two points, the coordinates of the midpoint of a line segment, and the circumference and area of a circle in the coordinate plane. You will also write equations for circles given sufficient information and graph circles.

Distance Formula

The distance between two points, $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, on a coordinate plane is as follows:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \text { *the order of } x \text { and } y \text { does not matter. }
$$

Example \#1: Find the distance between point S which is located at $(3,5)$ and point T which is located at $(-4,-2)$.

$$
\begin{aligned}
& d=\sqrt{(-4-3)^{2}+(-2-5)^{2}} \\
& d=\sqrt{(-7)^{2}+(-7)^{2}} \\
& d=\sqrt{49+49} \\
& d=\sqrt{98} \\
& d=\sqrt{49} \cdot \sqrt{2} \\
& d=7 \sqrt{2}
\end{aligned}
$$

The distance between $S(3,5)$ and $T(-4,-2)$ is $7 \sqrt{2}$.

Example \#2: Find the distance between point A which is located at $(5,9)$ and point B which is located at $(12,18)$.

$$
\begin{aligned}
& d=\sqrt{(12-5)^{2}+(18-9)^{2}} \\
& d=\sqrt{(7)^{2}+(9)^{2}} \\
& d=\sqrt{49+81} \\
& d=\sqrt{130}
\end{aligned}
$$

The prime factorization for 130 is $2 \times 5 \times 13$. Since there are no like factors, $\sqrt{130}$ is in simplest form.

The distance between $A(5,9)$ and $T(12,18)$ is $\sqrt{130}$.

QuickTime
Using the Distance Formula to Find Locus (06:40)

Midpoint Formula

The coordinates of the midpoint, M, between two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ can be found using the following formula:

$$
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Example \#1: Find the coordinates of the midpoint between point P which is located at $(-3,2)$ and point Q which is located at $(5,-2)$.

$$
\begin{aligned}
& M=\left(\frac{-3+5}{2}, \frac{2+(-2)}{2}\right) \\
& M=\left(\frac{2}{2}, \frac{0}{2}\right)
\end{aligned}
$$

$M(1,0) \quad$ The coordinates of the midpoint between P and Q are $(1,0)$.

Example \#2: Find the coordinates of the midpoint between point P which is located at $(-5,6)$ and point Q which is located at $(1,7)$.
$M=\left(\frac{-5+1}{2}, \frac{6+7}{2}\right)$
$M=\left(\frac{-4}{2}, \frac{13}{2}\right)$
$M\left(-2, \frac{13}{2}\right) \quad$ The coordinates of the midpoint between P and Q are $\left(-2, \frac{13}{2}\right)$.

Center, Circumference, and Area of a Circle in the Coordinate Plane

The midpoint formula can be used to find the center location of a circle on a coordinate plane; and then, by using the distance formula, you can find the area and the circumference of the circle.

Example \#1: The diameter of a circle has endpoints located at $P(8,-3)$ and $Q(-2,1)$.
a.) The center location of the circle is found by using the midpoint formula.

$$
\begin{aligned}
& C=\left(\frac{8+(-2)}{2}, \frac{-3+1}{2}\right) \\
& C=\left(\frac{6}{2}, \frac{-2}{2}\right) \\
& C(3,-1)
\end{aligned}
$$

b.) To find the area of the circle πr^{2} we will have to find the distance between the center $(3,-1)$ and either point $P(8,-3)$ or $Q(-2,1)$ because this will give us the radius. Let's use point Q.

$$
\begin{aligned}
& r=\sqrt{(-2-3)^{2}+(1-(-1))^{2}} \\
& r=\sqrt{(-5)^{2}+2^{2}} \\
& r=\sqrt{25+4} \\
& r=\sqrt{29} \quad \text { This is the radius of our circle. }
\end{aligned}
$$

c.) To find the area of the circle use the formula πr^{2}.

$$
\begin{aligned}
& A=\pi(\sqrt{29})^{2} \\
& A=29 \pi
\end{aligned}
$$

d.) To find the circumference of the circle use the formula $2 r \pi$.

$$
C=2 \pi \sqrt{29}
$$

Stop! Go to Questions \#6-8 about this section, then return to continue on to the next section.

Equations and Graphs of Circles

Circle: the set of all points in a plane that are a constant distance, called the radius, from a fixed point, called the center.

The standard equation of a circle is:

$$
(x-h)^{2}+(y-k)^{2}=r^{2} \text { with a center at }(h, k) .
$$

Example \#1: Find the center and radius of the circle with the equation $(x-8)^{2}+$ $(y+3)^{2}=144$.
$(x-8)^{2}+(y+3)^{2}=144$
$(x-8)^{2}+(y-(-3))^{2}=12^{2} \quad$ Rewrite the circle in standard form.
$h=8 \quad k=-3 \quad r=12$
The center of the circle is $(8,-3)$. The radius is 12 .
Example \#2: Find the center and radius of the circle with the equation $(x+5)^{2}+y^{2}=13$.
$(x+5)^{2}+y^{2}=13$
$(x-(-5))^{2}+(y-0)^{2}=(\sqrt{13})^{2} \quad$ Rewrite the circle in standard form.
$h=-5 \quad k=0 \quad r=\sqrt{13}$
The center of the circle is $(-5,0)$. The radius is $\sqrt{13}$.

Given the equation of a circle: $(x-2)^{2}+(y-1)^{2}=38$

Find the center of the circle. $(x-2)^{2}+(y-1)^{2}=38$
"Click here" to check the answer.
The center of the circle is $(2,1)$.

Find the radius of the circle. $(x-2)^{2}+(y-1)^{2}=38$
"Click here" to check the answer.

The radius of the circle is $\sqrt{38}$.

Given the equation of a circle: $x^{2}+(y+6)^{2}=64$

Find the center of the circle. $x^{2}+(y+6)^{2}=64$
"Click here" to check the answer.
The center of the circle is $(0,-6)$.

Find the radius of the circle. $x^{2}+(y+6)^{2}=64$
"Click here" to check the answer.
The radius of the circle is 8 .

Example \#3: Write the standard equation of a circle whose center is at $(-3,2)$ and whose radius is 4 .

$$
\begin{array}{ll}
(x-h)^{2}+(y-k)^{2}=r^{2} & \text { Use the standard form. } \\
(x-(-3))^{2}+(y-2)^{2}=4^{2} & \text { Substitute }-3 \text { for } h, 2 \text { for } k, \text { and } 4 \text { for } r . \\
(x+3)^{2}+(y-2)^{2}=16 & \text { Simplify. }
\end{array}
$$

The equation of the circle is $(x+3)^{2}+(y-2)^{2}=16$.

Example \#4: Write the standard equation of a circle whose center is at $(0,-2)$ and whose radius is $\sqrt{11}$.

$$
\begin{array}{ll}
(x-h)^{2}+(y-k)^{2}=r^{2} & \text { Use the standard form. } \\
(x-0)^{2}+(y-(-2))^{2}=(\sqrt{11})^{2} & \text { Substitute } 0 \text { for } h,-2 \text { for } k, \text { and } \sqrt{11} \text { for } r . \\
x^{2}+(y+2)^{2}=11 & \text { Simplify. }
\end{array}
$$

The equation of the circle is $x^{2}+(y+2)^{2}=11$.

Example \#5: Graph the following circle on a coordinate plane.

$$
(x+2)^{2}+(y-1)^{2}=9
$$

-locate the center point $(-2,1)$
-find the radius, 3 , and plot points straight above, below, left and right 3 units from the center and connect them with circular curves.

Example \#6: Put the equation of the circle given by $x^{2}+2 x+y^{2}+6 y=6$ in standard form.
$x^{2}+2 x+\ldots+y^{2}+6 y+\ldots=6+\ldots+\ldots \quad$ Set up two complete the squares.
$x^{2}+2 x+1+y^{2}+6 y+9=6+1+9$ Complete the square and balance the equation.
*The red number came from taking half of the linear term 2 and squaring it. Remember you also have to add this to the right side of the equation. The blue term came from taking half of the linear term 6 and squaring it.

$$
(x+1)^{2}+(y+3)^{2}=16 \quad \text { Write each as perfect square trinomials. }
$$

The center of this circle is located at $(-1,-3)$ and it has a radius of 4 units.

Stop! Go to Questions \#9-30 to complete this unit.

