I NEQUALITIES AND ABSOLUTE VALUE EQUATI ONS

An inequality is a mathematical statement that compares algebraic expressions using greater than (>), less than ($<$), and other inequality symbols. A compound inequality is a pair of inequalities joined by and or or. In this unit, properties of inequalities will be used to solve linear inequalities and compound inequalities in one variable. The unit concludes with a study of absolute-value equations and inequalities.

Introduction to Solving Inequalities
Solving Absolute Value Equations and Inequalities

I ntroduction to Solving I nequalities

Inequality - a mathematical statement that compares algebraic quantities

Inequality Symbols	Meaning	Keyboard Entry
$<$	less than	$<$
$>$	greater than	$>$
\leq	less than or equal	$<=$
\geq	greater than or equal	$>=$
\neq	not equal	$<>$

*Solving inequalities is just like solving equations, use opposite operations to isolate the variable.

Example \#1: $3(5 x-7) \geq 54$

$$
15 x-21 \geq 54
$$

$$
+21+21
$$

$$
15 x \geq 75
$$

$$
x \geq 5
$$

*When multiplying or dividing by a negative number, the inequality sign must be reversed.

Let's take a look at why this rule applies.
Let's say that we know $4>2$. If we multiply both sides of this inequality by a -2 , let's see what happens to the inequality.

$4>2$	*this is a true inequality
$(-2) 4>(-2) 2$	
multiply both sides by -2	
$-8>-4$	*the result is not a true statement; however, if we flip the inequality sign, the result will be a true statement.
$-8<-4$	

Example \#2: $2 y+9<5 y+15$

$$
\begin{array}{rr}
-5 y & -5 y \\
-3 y+9 & <15 \\
-9 & -9 \\
\frac{-3 y}{-3} & <\frac{6}{-3}
\end{array}
$$

$$
y>-2 \quad * \text { Notice that the inequality sign was flipped }
$$ because of the division by -3 .

Example \#3: $\quad \frac{3}{4}(x-7) \leq x-3$

You can represent the solution of an inequality in one variable on a number line.
For < and > an open circle is used to denote that the solution number is not included in the solution.

For \leq and \geq a closed circle is used to denote that the solution number is included in the solution.

Example \#4: $x<4 \quad y \geq-7$

compound inequalities: a pair of inequalities joined by "and" or "or".
To solve a compound inequality joined with "and", find the values of the variable that satisfy both inequalities.
*"and" means the intersection of the solutions

$$
\begin{aligned}
& \text { (4) } \frac{3}{4}(x-7) \leq 4(x-3) \quad \text {-Multiply both sides by } 4 \text {. } \\
& 3(x-7) \leq 4(x-3) \quad \text {-Distribute. } \\
& 3 x-21 \leq 4 x-12 \\
& -3 x-3 x \\
& -21 \leq x-12 \\
& -9 \leq x \quad \text {-Rewrite with } x \text { on left side, } \\
& x \geq-9 \quad \text { inequality sign is reversed. }
\end{aligned}
$$

Example \#5: $2 x+3>1$ and $5 x-9<6$

$$
2 x>-2 \quad \text { and } \quad 5 x<15
$$

$$
x>-1 \quad \text { and } \quad x<3
$$

The solution is written $\{x /-1<x<3\}$ (set notation) "all numbers x, such that -1 is less than x is less than 3 ".

To solve a compound inequality joined with "or", find the values of the variable that satisfy at least one inequality.
"or" means the union of the solutions

Example \#6: $3 b+7 \leq 1 \quad$ or $\quad 2 b-3 \geq 1$

$$
3 b \leq-6 \quad \text { or } \quad 2 b \geq 4
$$

$$
b \leq-2 \quad \text { or } \quad b \geq 2
$$

The solution is written $\{b / b \leq-2$ or $\mathrm{b} \geq 2\}$ (set notation) "all numbers b such that b is less than or equal to -2 or b is greater than or equal to 2 ".

Solving Absolute Value Equations and I nequalities

absolute value - the distance a number is from zero (always positive).
*Two bars around the number denote absolute value.
$|-5|=5 \quad|6|=6$
To solve absolute value equations:

1. Rewrite the equation without the absolute value notation.
2. Rewrite a second time using the opposite of what the original equation was equal to, and connect with the word "or".
3. Solve both equations and check both answers in the original equation.

Example \#1: Solve $|2 x-1|=3$

$$
\begin{array}{rlrlrl}
2 x-1 & =3 & \text { or } & 2 x-1 & =-3 & \\
2 x & \text { the }-3 \text { is the opposite of } \\
2 x & \text { or } & 2 x & =-2 & & \text { what the original was } \\
x & =2 & \text { or } & x & =-1 & \\
\text { equal to. }
\end{array}
$$

Check $|2(2)-1|=3$ or $\quad|2(-1)-1|=3$
$|4-1|=3 \quad$ or $\quad|-2-1|=3$
$|3|=3$ or $\quad|-3|=3$
$3=3$ or $3=3$
Therefore, the solution is 2 or -1 .
Example \#2: Solve $|2 x+1|=x+5$

$$
\begin{array}{rlrlrl}
2 x+1 & =x+5 & \text { or } & 2 x+1 & =-x-5 & * \text { again use the opposite } \\
x & =4 & \text { or } & 3 x & =-6 \\
x & =-2
\end{array}
$$

$$
\begin{aligned}
& \text { Check: }|2(4)+1|=4+5 \quad \text { or } \quad|2(-2)+1|=-2+5 \\
& |8+1|=9 \quad \text { or } \quad|-4+1|=3 \\
& |9|=9 \quad \text { or } \quad|-3|=3 \\
& 9=9 \quad \text { or } \quad 3=3
\end{aligned}
$$

Therefore, the solution is 4 or -2 .
absolute value inequalities - an absolute value that contains an inequality.
To solve absolute value inequalities:
1.) Rewrite the inequality without the absolute value notation.
2.) Rewrite a second time, change the inequality sign, and use opposites.
3.) Solve both inequalities and check both answers in the original inequality.
4.) If the inequality is a $<$ or \leq, connect with the word "and".
5.) If the inequality is a $>$ or \geq, connect with the word "or".

Example \#3: Solve $|3 x+2|>4$

$$
3 x+2>4 \quad \text { or } \quad 3 x+2<-4 \quad \text { *flip the sign and use the }
$$

$$
3 x>2 \quad \text { or } \quad 3 x<-6 \quad \text { opposite }
$$

$$
x>\frac{2}{3} \quad \text { or } \quad x<-2
$$

$$
-2 \quad \frac{2}{3}
$$

Check: $|3 x+2|>4$
To check this problem you will have to choose a number that is less than -2 , and then choose a number that is greater than $\frac{2}{3}$.

$$
\begin{array}{rlr}
\text { Check }(-3) & & \text { Check (1) } \\
|3(-3)+2|>4 & \text { or } & |3(1)+2|>4 \\
|-9+2|>4 & \text { or } & |3+2|>4 \\
|-7|>4 & \text { or } & |5|>4 \\
7>4 \text { (true) } & & 5>4 \text { (true) }
\end{array}
$$

Therefore, the solution to this absolute value inequality is $\left\{x / x<-2\right.$ or $\left.x>\frac{2}{3}\right\}$.

Example \#4: Solve $\frac{1}{2}|5 x-12|+4 \leq 13$

$$
-4 \quad-4
$$

(2) $\frac{1}{2}|5 x-12| \leq(2) 9$
$|5 x-12| \leq 18$

$-\frac{6}{5} \quad 6$

Check: $\frac{1}{2}|5 x-12|+4 \leq 13$
To check this problem, you will have to choose a number that is greater than $-\frac{6}{5}$ and also less than 6 .

$$
\begin{aligned}
& \text { Check (0) } \\
& \frac{1}{2}|5 x-12|+4 \leq 13 \\
& \frac{1}{2}|5(0)-12|+4 \leq 13 \\
& \frac{1}{2}|-12|+4 \leq 13 \\
& \frac{1}{2}(12)+4 \leq 13 \\
& 6+4 \leq 13 \\
& 10 \leq 13 \text { (true) }
\end{aligned}
$$

Therefore, the solution to this absolute value inequality is $\left\{x / x>-\frac{6}{5}\right.$ and $\left.x<6\right\}$.

