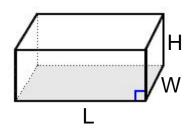
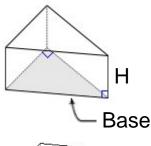
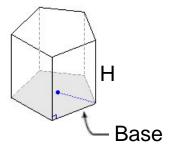

Surface Area and Volume


Cube

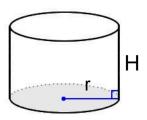

Surface Area =
$$6S^2$$

Volume =
$$S^3$$

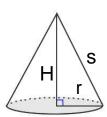

Rectangular Prism

General Prisms

Volume = Area of base times height.

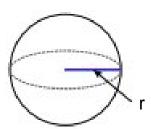


Surface Area and Volume


Right Circular Cylinder

Surface Area =
$$(2 \pi r^2) + (\pi 2r H)$$

Volume =
$$\pi r^2 H$$


Right Circular Cone

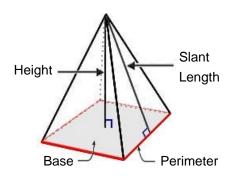
Surface Area =
$$(\pi r s) + (\pi r^2)$$

Volume =
$$\frac{1}{3} \operatorname{rr}^2 H$$

Sphere

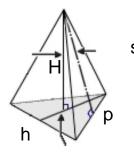
Surface Area =
$$4 \text{ m r}^2$$

Volume =
$$\frac{4}{3} \pi r^3$$

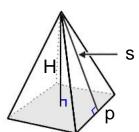


Surface Area and Volume

Types of Pyramids


There are many types of Pyramids, and they are named after the shape of their base.

The general equations for Surface Area and Volume of Pyramids when all side faces are the same:


Surface Area = [Base Area] +
$$\frac{Perimeter}{2}$$
 x [Slant Length]

Volume =
$$\frac{1}{3}$$
 x [Base Area] x Height

Surface Area =
$$\frac{1}{2}$$
ph + $\frac{3}{2}$ ps

Volume =
$$\frac{1}{6}$$
 p h H

Surface Area =
$$p^2 + 2p s$$

Volume =
$$\frac{1}{3}$$
 p² H

