CIRCUMFERENCE AND AREA OF CIRCLES AND CIRCLE SECTORS

Circles are all around us. Look around the room and find a few circular objects. In our study of circles we will first review the names of the parts of a circle.

Circumference is the distance around a circle. Imagine being a centipede and crawling around the edge of a circle. When the centipede reaches the point on the circle where he started, he has traveled the circumference of the circle. To calculate the circumference of a circle, we use the formula, circumference equals two times "pi" times radius.

We will also examine finding the area of a circle. Area measures the amount of coverage the circle makes. The formula for finding the area of a circle is area equals "pi" times radius squared.

Circle sectors are parts of circles. We find the area of a circle sector by first finding the area of the entire circle, and then find the area of the fractional part of the circle given.

Parts of a Circle

Sector is a section of the circle.

Circumference of a Circle

In the formulas below find two ways to calculate circumference, the distance around a circle.

$\operatorname{Pi}(\pi)$ is the ratio of the circumference of a circle to its diameter $\left(\frac{C}{d}\right)$.
π is approximately equal to 3.14 .

$$
\mathrm{C}=\pi \times \mathrm{d} \quad \longrightarrow \quad \mathrm{C}=\pi \times(2 \times \mathrm{r}) \quad \text { or } \quad \mathrm{C}=2 \times \pi \times \mathrm{r}
$$

Find the circumference for each of the circles.

$$
\text { Radius }=6 \text { in }
$$

Diameter $=14 \mathrm{ft}$

Area of a Circle

Reminder: The area of a circle is the area that the circle covers.

A circle's area can be rearranged into a shape that approximates a parallelogram.

The length of the parallelogram is the same length as half the circle's circumference. The height of the parallelogram would be the same as the radius of the circle.

Statement

$A=B \times H$
$\mathrm{A}=\left(\frac{1}{2} \times C\right) \times r$
$\mathrm{A}=\left(\frac{1}{2} \times 2 \times \pi \times r\right) \times r$
$\mathrm{A}=1 \times(\pi \times r) \times r$
$\mathrm{A}=(\pi \times r) \times r$
$\mathrm{A}=\pi \times(r \times r)$
$\mathrm{A}=\pi \times r^{2}$

Reason

Formula for area of parallelogram
Base $=\frac{1}{2} \times C \quad$ Height $=r$
$\mathrm{C}=2 \times \pi \times r$
$\frac{1}{2} \times 2=1$
Identity Property (Any number times 1 is the number.)
Associative Property (Regrouping is allowed in multiplication.
$r \times r=r^{2}$

Find the area for each of the circles.

$$
\begin{aligned}
& \text { Radius }=5 \text { in } \\
& \mathrm{A}=\pi \times \mathrm{r}^{2} \\
& \mathrm{~A}=3.14 \times 5^{2} \\
& \mathrm{~A}=3.14 \times 25 \\
& \mathrm{~A}=78.5 \text { square inches }
\end{aligned}
$$

Diameter $=20 \mathrm{ft}$

$$
\begin{aligned}
& \mathrm{A}=\pi \times \mathrm{r}^{2} \\
& \mathrm{~A}=3.14 \times 10^{2} \\
& \mathrm{~A}=3.14 \times 100 \\
& \mathrm{~A}=314 \text { square feet }
\end{aligned}
$$

*Note: Since the diameter is given as 20 feet, we must find the radius, which is half the diameter, and then substitute into the formula. ($\frac{1}{2}$ of 20 is 10)

Remember, area is a measurement of coverage; thus, area calculations result in square units.

Area of Circle Sectors

To find the area of a sector of a circle, first determine the area of the whole circle, and then find the fractional part that represents the circle.

Find the area.
$\mathrm{A}=\pi \times \mathrm{r}^{2}$
A $=3.14 \times 8 \times 8$
$\mathrm{A}=3.14 \times 64$
$A=200.96$ square inches

Find the area of this sector.
Since the sector is $\frac{3}{4}$ the area of the entire circle,
the area of the sector would be $\frac{3}{4}$ of 200.96 square inches.
$\frac{3}{4} x \frac{200.96}{1}=\frac{602.88}{4}=150.72$ square inches

