DECI MALS: EQUIVALENCE AND MULTI PLI CATI ON

To multiply decimals, we multiply and then count the number of decimal places to the right of the decimal point for each decimal number. We then add them together to find the total number of decimal places needed in the answer. We'll first look at modeling multiplication of decimals to find out why we place the decimal point in the answer this way. We will use decimal squares to create the model.

After investigating decimal models, we will practice multiplying decimals and extending our knowledge with more decimal multiplication using paper and pencil.

When computing with decimals some answers can be simplified. We will examine equivalent decimals and find ways to simply answers.

Modeling Multiplication of Decimals

10 by 10
represents 1

1 by 10
represents
0.1 or one tenth

1 by 1
represents
0.01 or one hundredth

To Show 0.9×0.6

Use ones square (10 by 10).
Step 1
Shade in 0.9 (9 one-tenth strips) of one color (yellow) horizontally all the way across the ones block.

Step 2

In the same ones block, shade in 0.6 (6 one-tenth strips) using a different color (blue) vertically all the way to the top.

The Result

The hundredths squares that are colored with both blue and yellow, resulting in green is the area that is the answer to the multiplication problem.

Step 1

0.9

Step 2

0.6

The Result

0.54
(54 hundredths)

By the rule for placing the decimal point in the answer, count the places to the right of the decimal in 0.9 , which is one, and also there is one in 0.6 , totaling two decimals needed for the answer 0.54 .

Notice in the model that 54 of the one hundredths squares are shaded green.

Decimal Squares

1 Whole or $100 / 100$ ths

1

1/10th

Multiply Decimals

Multiplying Decimals Less Than One

To place the decimal point when multiplying decimals, count the decimal places in each factor and total them. The total is the number of decimal places that will be in the product (answer to a multiplication problem).

Multiply $0.7 \times 0.9 \quad$ Estimate: $1 \times 1=1$

Why two places?
Write both as fractions and multiply.
$\frac{7}{10} \times \frac{9}{10}=\frac{63}{100}=0.63$
Answer: 63 hundredths

$$
\begin{array}{lll}
10 & 10 & 100
\end{array}
$$

Check: The estimate, 1 , is close to 0.63 .

Use 0 as a placeholder before the numerals to give 4 decimal places.

Answer: 432 ten thousandths
Check: The estimate, 0 , is close to 0.0432 .

More Decimal Multiplication

To place the decimal point when multiplying decimals, count the decimal places in each factor and total them. The total is the number of decimal places that will be in the product (answer to a multiplication problem).

Multiply 5.23×7.9

Estimate: $5 \times 8=40$

Answer: 41 and 317 thousandths
Check: The estimate, 40, is close to 41.317 .

Why three places?
Write both as mixed fractions and multiply. $5 \frac{23}{100} \times 7 \frac{9}{10}=$ $\frac{523}{100} \times \frac{79}{10}=\frac{41317}{1000}=$ $41 \frac{317}{1000}=41.317$

Multiply 46×2.8

Estimate: $50 \times 3=150$

Answer: 128 and 8 tenths
Check: The estimate, 150, is close to 128.8 .

Equivalent Decimals

To make equivalent decimals, you may add on zeros as needed.
The zeros do not change the value of the decimal, just its appearance.

$$
2.4=2.40=2.400
$$

2 and 4 tenths equals 2 and 40 hundredths equals 2 and 400 thousandths

$$
\begin{aligned}
& 2 \frac{4}{10}=2 \frac{40}{100}=2 \frac{400}{1000} \\
& \binom{2 \frac{40}{100} \div \frac{10}{10}=2 \frac{4}{10}}{2 \frac{400}{1000} \div \frac{100}{100}=2 \frac{4}{10}}
\end{aligned}
$$

To make equivalent decimals, you may take off zeros as needed.
The zeros do not change the value of the decimal, just its appearance.

$$
2.400=2.40=2.4
$$

