\square

Probability

Find the probability. Assume that the spinner is separated into equal sections.

1. You roll a cube which has the numbers 5, 7, 7, 2. You flip a coin and toss a 1-6 number cube.

Date \square

10, 12, and 5 on it. You then spin a spinner which has 7 sections. The letters on the spinner are B, F, F, C, J, J, and K. $\mathrm{P}(5$ and F$)$
3. You roll a cube which has the numbers $2,4,5$, 6,8 , and 9 on it. You then spin a spinner which has 7 sections. The letters on the spinner are C, E, G, H, J, D, and K. P (K and 9)
9. You roll a cube which has the numbers 13,14 , $17,19,22$, and 24 on it. You then spin a spinner which has 8 sections. The letters on the spinner are $\mathrm{J}, \mathrm{B}, \mathrm{G}, \mathrm{H}, \mathrm{C}, \mathrm{A}, \mathrm{E}$, and K . $\mathrm{P}(17$ and B$)$

5. You roll a cube which has the numbers 18,20 , $21,25,21$, and 27 on it. You then spin a spinner which has 4 sections. The letters on the spinner are $\mathrm{K}, \mathrm{H}, \mathrm{F}$, and H . $\mathrm{P}($ an even number and K$)$
7. You flip a coin and toss a 1-6 number cube. P (heads and 2)

P (3 or 2 and heads)
4. You roll a number cube numbered from 1 to 6 . You then spin a spinner with 8 sections each with a different color. The spinner has the colors gray, purple, pink, violet, green, brown, white, and orange. P (gray and not 2)
6. You roll a cube which has the numbers 20,21, $24,27,30$, and 31 on it. You then spin a spinner which has 6 sections. The letters on the spinner are E, H, C, F, A, and J. $\mathrm{P}(\mathrm{F}$ and 31$)$
8. You roll a number cube numbered from 1 to 6 .

You then spin a spinner with 6 sections each with a different color. The spinner has the colors black, pink, white, blue, brown, and red. P (a number divisible by 3 and pink)
\qquad 4.
10. You roll a cube which has the numbers 3, 3, $4,10,9$, and 10 on it. You then spin a spinner which has 8 sections. The letters on the spinner are $\mathrm{D}, \mathrm{A}, \mathrm{C}, \mathrm{K}, \mathrm{H}, \mathrm{B}, \mathrm{D}$, and K . $\mathrm{P}($ not 9 and not B$)$

