
PROGRAMMING

Unit Overview
By the end of this unit, the student will be able to define the term computer program and
explain the process by which programs are developed. The student will also identify
types of programming languages and describe their differences.

Key Terms

Computer Program: A
computer program is a group of
instructions that dictate the specific
tasks that the computer will perform.

Program Development Life
Cycle: The program development
life cycle (PDLC) is a six-step
process for developing computer
programs.

Programming Language: A
programming language is a set of
keywords, punctuations, and
spellings that instruct the computer
how to complete tasks.

Syntax Errors: An error in the
spelling or grammar of the computer
language.

Source Program: The program
that contains the code of an
assembly language.

Semantic Error: An error in
logic that occurs when a command
that does not make sense is entered
into a program.

What is a Computer Program?
A computer program is a group of instructions that dictate the specific tasks that the
computer will perform. The instructions contained in the computer program are
performed in a step-by-step sequential order. Usually, a computer program is saved in the
computer’s memory making it accessible to the computer.

How Computer Programs are Written?
There are three different phases of program development. They are the problem solving
phase, the implementation phase, and the maintenance phase.

During the problem solving phase, computer programmers define the problem, think of
possible solutions to the problem, develop a set of steps to solve the problem, and then
test the steps to see if they work.

In the implementation phase, procedures are converted into a programming language that
is then entered into the computer. The program is analyzed to identify and correct errors.
Then the program documentation and code are evaluated for final approval.

In the maintenance phase, the program continues to be evaluated for errors and is
modified based on changing requirements or user preferences.

Design
Program

Program Development Life Cycle
The program development life cycle (PDLC) is another way to describe the development
of computer programs. This six step process is in alignment with the three
implementation phases listed above. Read and compare the six steps of the PDLC with
the three phases of program development.

Step 1: Analyze the Problem
During this step, the programmer usually meets with the systems analyst and users so he
can thoroughly define the problem and its solution. This enables the programmer to
define the program specifications and identify the program’s input, output, and
processing components.

Step 2: Design Program
In this step, programmers develop modules or sets of program activities. Then a formula
is designed for each module. Finally, the formulas or algorithms are tested to see if they
work.

Step 3: Code Program
In this step, the formulas or algorithms are converted into a programming language that is
then entered into the computer.

Analyze the
Problem

Code
Program

Test
Program

Maintain
Program

Formalize
Solution

Program Development Life Cycle

Step 4: Test Program
In this step, the program is evaluated and any errors in grammar (syntax) or logic
(semantic) are corrected.

Step 5: Formalize Solution
The program documentation and code is evaluated and then the program is run once more
to be sure it is functioning properly.

Step 6: Maintain Program
The program continues to be evaluated for errors and is modified or enhanced based on
changing requirements or user preferences.

Elements of Program Design
In step 2 of the PDLC, the program design is developed. During this process, a top-down
design is used to clarify the program specifications by breaking them into smaller, more
manageable units. The program continues to be broken down until each section of the
program dedicated to performing a single function is identified (module). Programmers
use a hierarchy chart to identify the main program activity and its subordinate
components.

Process Wrap-Up Initialization

Top-Down Design Hierarchy Chart

Main

Structured design is the method for determining the order in which the computer will
carry out the procedures that have been developed for each module. The three basic
control structures are:

1) Sequence control structure represents the order of actions
2) Selection control structure represents the action to be taken
3) Repetition structure represents repeated actions

What is a Programming Language?
A programming language is a set of keywords, punctuations, and spellings that instruct
the computer how to complete tasks. Each programming language has its own exclusive
keywords and format for communicating with the computer.

Types of Programming Languages
Programming languages are classified as machine language, assembly language, third
generation languages (3GL), fourth-generation languages (4GL), and natural
languages. These groups are further divided into two categories: low-level languages
and high-level languages.

Low-level languages include machine language and assembly language. These
programming languages can only be run on the computer for which it was designed.

• Machine language is comprised of only numbers. Machine language has the
ability to be read directly by the computer.

• Assembly Language uses symbols, abbreviations, and codes to communicate
instructions to the computer. In order for the computer to understand assembly
language it must be translated into machine language.

High-level languages include third generation languages, fourth generation languages,
and natural languages. These program languages can be used on many different
computers, simplify the process of writing programs, and use terminology that is closely
related to English.

• Third Generation Languages (3GL) uses English-like words and arithmetic
operators to tell the computer what needs completed and how to perform tasks
to generate the desired result. For this reason, third generation language is
sometimes called procedural language. Like assembly language, it must be
translated into machine language for the computer to execute the program

• Fourth Generation Languages (4GL) is a non-procedural language that uses
English-like words to convey to the computer what needs to be accomplished.
These program languages are extremely user friendly and can be utilized by
computer users with virtually no programming experience.

• Natural Language is a computer language that does not use a definite
structure or precise regulations for communicating with the computer. This
programming language most closely resembles our everyday patterns of
speech.

How Programming Languages are Translated
As mentioned in the previous section, most programming languages have to be translated
into machine language in order to be understood and utilized by the computer. There are
a variety of programs that are used to translate programming languages including an
assembler, a compiler, or an interpreter.

An assembler is a computer program that translates the source program of an assembly
language into machine language.

A compiler is used to translate the source program of a third-generation language into
machine language. Using a compiler, the whole source program is translated at once.
The end result of the compilation is called an object program.

An interpreter also translates the source program of a third-generation language into
machine language. Unlike the compiler, the interpreter translates one line of code at a
time.

Popular Programming Languages

Name Type of Language Primary Use

BASIC Interactive Business applications

FORTRAN high-level Scientific applications

C procedural Operating Systems and
applications

C++ object-oriented Applications software

JavaScript interpreted
programming language Website development

C procedural Operating Systems and
applications

