VOLUME

In this unit, solids and their volumes will be investigated. The volume of a solid is the amount the solid contains. Volume is a measure of capacity and is measured in cubic units. Formulas for each solid will be derived and used to calculate the volume. In addition, a close look will be given to the relationship that exists between the volume of a cylinder and a cone with the same measurements, along with the volume of a prism and a cylinder with the same measurements.

You may use a calculator to help with the computations, but work with the calculator carefully and double check all calculations.

Volume of a Rectangular Prism
Volume of a Cube
Volume of a Prism
Volume of a Cylinder
Volume of a Cone and a Pyramid
Volume of a Sphere

Volume of a Rectangular Prism

To calculate the volume of a rectangular prism, multiply the area of the base (length \times width) times height.

$$
\begin{aligned}
& V=\text { Area of Base } \times \text { Height } \\
& V=(\text { length } \times \text { width }) \times \text { height } \\
& V=l \times w \times h
\end{aligned}
$$

Example 1: Compute the volume of a square prism with a base area of 25 square feet and a height of 9 feet.
*A square prism is a prism with a square base.
Since the base area is given, simply multiply the area of the base times the height to calculate the volume.

*Reminder: Volume is measured in cubic units.
The volume of the square prism is 225 cubic feet.
Example 2: Calculate the volume of a rectangular prism with a length of 11 feet, width of 8 feet, and a height of 23 feet.

Since all dimensions of the prism are given, use the volume formula for a rectangular prism to calculate the volume.

The volume of the rectangular prism is 2024 cubic feet.

Volume of a Cube

To calculate the volume of a cube, multiply the edge times itself three times.

Example: Calculate the volume of a cube with an edge length of eight feet.

$$
\begin{aligned}
& V=e^{3} \\
& V=8^{3} \\
& V=8 \times 8 \times 8 \\
& V=512
\end{aligned}
$$

The volume of the cube is 512 cubic feet.

Volume of a Prism

The volume of a prism is the amount the prism can hold and is measured in cubic units. To calculate the volume of a prism, multiply the area of its base times its height.

Example: Find volume of a triangular prism with a height of 16 inches, and the dimensions of the triangular base are a base of six inches and a height of four inches.

Step 1: First, find the area of the triangular base.

$$
\begin{aligned}
& A=\frac{1}{2} b \times h \\
& A=\frac{1}{2} \times 6 \times 4 \\
& A=\frac{1}{2} \times 24 \\
& A=12 \text { square inches }\left(\mathrm{in}^{2}\right)
\end{aligned}
$$

Step 2: Let \boldsymbol{B} represent the area of the base $\left(12 \mathrm{in}^{2}\right)$ and \boldsymbol{h} represent the height (16 in) of the prism.

$$
\begin{aligned}
& V=B \times h \\
& V=12 \times 16 \\
& V=192
\end{aligned}
$$

*Reminder: Volume is measured in cubic units.
The volume of the triangular prism is 192 cubic inches $\left(\mathrm{in}^{3}\right)$.
There are many kinds of prisms. Some prisms are named for the shape of their bases. The formula, $\boldsymbol{V}=\boldsymbol{B} \times \boldsymbol{h}$, may be used to determine the volume of prisms.

Here are some examples of prisms:

Cube

Volume of a Cylinder

The volume of a cylinder is the amount a cylinder can hold and is measured in cubic units. To calculate the volume of a cylinder, multiply the area of the base times the height.

$$
V=\text { Area of Base } \times \text { Height }
$$

The base of a cylinder is a circle. To calculate the area of a circle, use $A=\pi \times r^{2}$.
$V=\left(\pi \times r^{2}\right) \times h$

Example 1: Find the volume of a cylinder with a radius of 12 centimeters and the height is 23 centimeters. (Use 3.14 for "pi".)

$$
\begin{aligned}
& V=\pi \times r^{2} \times h \\
& V=3.14 \times 12^{2} \times 23 \\
& V=3.14 \times 144 \times 23 \\
& V=10,399.68
\end{aligned}
$$

*Reminder: Volume is measured in cubic units.
The volume of the cylinder is $10,399.68$ cubic centimeters $\left(\mathrm{cm}^{3}\right)$.

Example 2: Compute the volume of a cylinder with a base area of 420 square centimeters and a height of 14 centimeters.

Since the base area is given, simply multiply the area of the base times the height to calculate the volume.

*Reminder: Volume is measured in cubic units.
The volume of the cylinder is 5880 cubic centimters.

Example 3: If the volume of a cylinder is 628 cubic feet and the height of the cylinder is eight feet, what is the radius of the cylinder? (Use 3.14 for "pi".)

$$
\begin{array}{ll}
V=\pi \times r^{2} \times h & \\
628=3.14 \times r^{2} \times 8 & \text { Substitute }(V=628 \text { and } h=8) \\
628=3.14 \times 8 \times r^{2} & \begin{array}{l}
\text { Apply the commutative property } \\
\text { to switch the positions of } 8 \text { and } r^{2} .
\end{array} \\
628=25.12 \times r^{2} & \begin{array}{l}
\text { Simplify }(3.14 \times 8=25.12) \\
\frac{628}{25.12}=\frac{25.12 \times r^{2}}{25.12}
\end{array} \\
25=r^{2} & \text { Divide both sides by } 25.12 . \\
r=5 & \begin{array}{l}
\text { Simplify. } \\
\text { Since } r^{2}=25, \text { take the square root } \\
\text { of } 25 \text { to determine } r .
\end{array}
\end{array}
$$

The radius of the cylinder is 5 feet.
*Since the answer is the length the radius, a linear measure, use feet (not cubic feet) to label the answer.

Volume of a Cone and a Pyramid

Cone

The volume of a cone can be found in a similar way to finding the volume of a cylinder. The difference is that the volume of a cone is considerably less than the volume of a cylinder with the same dimensions (radius and height).
*The volume of a cone is equal to $1 / 3$ the volume of a cylinder with the same dimensions.

Example 1: Find volume of a cone with a radius of five inches and the height is nine inches.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} \times h \\
& V=\frac{1}{3} \times 3.14 \times 5^{2} \times 9 \\
& V=\frac{1}{3} \times 3.14 \times 25 \times 9 \\
& V=235.5
\end{aligned}
$$

*Reminder: Volume is measured in cubic units.
The volume of the cone is 235.5 cubic inches (in ${ }^{3}$).

Pyramid

The volume of a pyramid is related to a rectangular prism that has the same dimensions (length, width, and height). As with the comparison of the volume of a cylinder and cone that have the same dimensions, the volume of a pyramid is considerably less than the volume of the rectangular prism with the same dimensions.
*The volume of a pyramid is equal to $1 / 3$ the volume of a rectangular prism with the same dimensions.

When calculating the volume of a pyramid, multiply $1 / 3$ times the area of the base (B) times the height.

Example 2: Find the volume of a square pyramid (base is a square) with the edge of the square base measuring eight feet and the height of the pyramid measuring 12 feet.

$$
\begin{array}{ll}
V=\frac{1}{3} B h & \\
V=\frac{1}{3} \times(8 \times 8) \times 12 & \text { Area of square base equals } 8^{2} \\
V=\frac{1}{3} \times 64 \times 12 & \text { or } 8 \times 8 . \\
V=256 & \text { Simplify }
\end{array}
$$

*Reminder: Volume is measured in cubic units.
The volume of the pyramid is 256 cubic feet $\left(\mathrm{ft}^{3}\right)$.

Volume of a Sphere

The volume of a sphere is calculated using the formula $V=\frac{4}{3} \pi r^{3}$.

Example: Calculate the volume of a sphere with a radius of seven centimeters, and round the answer to the nearest hundredth.

$$
\begin{array}{rlrl}
V & =\frac{4}{3} \pi r^{3} & \\
V & =\frac{4}{3}(3.14)\left(7^{3}\right) & & \text { Subsitute the given radius. } \\
V & =\frac{4}{3} \times 3.14 \times(343) & & 7 \times 7 \times 7=343 \\
V & =1436.0266 \ldots & & \text { Simplify } \\
V & =1436.03 & & \text { Round to the nearest hundredth. }
\end{array}
$$

*Reminder: Volume is measured in cubic units.
The volume of the sphere is 1436.03 cubic centimeters $\left(\mathrm{cm}^{3}\right)$.

