MULTI PLY FRACTI ONS

This unit is about multiplication of fractions and mixed numbers. The technique of cancelling will also be discussed to show a way to simplify computations.

Estimate Products
Modeling Multiplication of Fractions
Mixed Numbers (Review)
Multiplication of Fractions

Estimate Products

When two numbers are multiplied together, the result is called the product of the two numbers.

Estimation is used to approximate an answer to a math problem when an exact answer is not required.

Example 1: Mr. Saddler is building a rectangular fence to enclose the field for his new horses. After measuring the length and width of the field, he found that the length of the field was $89 \frac{7}{9}$ meters and the width was $75 \frac{1}{5}$ meters.

Mr. Saddler’s neighbor asked, "About how much area will the horses have to roam?"

Since his neighbor asked about how much, Mr. Saddler used estimation to answer his neighbor's question.

Step 1: Determine the formula to use for finding the area of the field, and then set up the problem.

$$
\begin{aligned}
& A=l \times w \\
& A=89 \frac{7}{9} \times 75 \frac{1}{5}
\end{aligned}
$$

Step 2: Round each mixed number to the nearest whole number.
For $89 \frac{7}{9}$ find the fraction that represents $1 / 2$ in 9 ths.

$$
\left(\begin{array}{lll}
\frac{1}{2} \text { of } 9 \text { is } 4.5 & 2 \longdiv { 4 . 5 } \\
9.0 & \text { so, } \frac{1}{2}=\frac{4.5}{9}
\end{array}\right)
$$

Since $\frac{7}{9}$ is greater than $\frac{4.5}{9}, 89 \frac{7}{9}$ rounds up to 90 .

For $75 \frac{1}{5}$ find the fraction that represents $1 / 2$ in 5 ths.

$$
\left(\begin{array}{lll}
\frac{1}{2} \text { of } 5 \text { is } 2.5 & 2 \longdiv { 2 . 5 } & \text { so, } \frac{1}{2}=\frac{2.5}{5}
\end{array}\right)
$$

Since $\frac{1}{5}$ is less than $\frac{2.5}{5}, 75 \frac{1}{5}$ rounds to 75 .

Step 3: Solve the problem using the rounded numbers.

$$
\begin{aligned}
& A=l \times w \\
& A \approx 90 \times 7 \\
& A \approx 6750
\end{aligned}
$$

$$
A \approx 90 \times 75 \approx \text { is the symbol for "approximately equal to" }
$$

The field for the horses to roam will have an area of about 6750 square meters.

Modeling Multiplication of Fractions

In the model below, the fraction $4 / 5$ is represented in Rectangle A (yellow) and $2 / 3$ is represented in Rectangle B (blue).

Rectangle B
$\underline{2}$
3

To show multiplication through the models, each rectangle is divided into 15ths, since 15 is a common denominator of 5 and 3 .
Rectangle A Rectangle B Rectangle A×Rectangle B*
$\frac{4}{5}=\frac{12}{15}$

$\frac{4}{5}$
$\frac{2}{3}=\frac{10}{15}$

$\frac{2}{3}$

$=\frac{8}{15}$

The eight green squares show the areas that overlap between Rectangle A and Rectangle B; thus, the overlapping area ($8 / 15$) represents the product of $4 / 5$ and $2 / 3$.

$$
\frac{4}{5} \times \frac{2}{3}=\frac{4 \times 2}{5 \times 3}=\frac{8}{15}
$$

Mixed Numbers

Mixed numbers are numbers that have a whole number and a fraction.
Examples of Mixed Numbers: $\quad 2 \frac{2}{3} \quad 7 \frac{5}{8} \quad 29 \frac{3}{4}$
Improper fractions are fractions where the numerator is larger than the denominator.

Examples of Improper Fractions: $\quad \frac{8}{3} \quad \frac{61}{8} \quad \frac{119}{4}$
When working with fractions, it is necessary to know how to convert mixed numbers to improper fractions and vice versa.

Changing Mixed Numbers to Improper Fractions
Example 1: Express $1 \frac{5}{12}$ as an improper fraction.

$$
1 \frac{5}{12}=1+\frac{5}{12}=\frac{12}{12}+\frac{5}{12}=\frac{12+5}{12}=\frac{17}{12}
$$

*A quick way to find the improper fraction is to multiply the denominator by the whole number, and add on the numerator. Then, place that number over the denominator.

$$
1 \frac{5}{12}=\frac{12 \times 1+5}{12}=\frac{12+5}{12}=\frac{17}{12}
$$

The improper fraction for $15 / 12$ is $17 / 12$.

Example 2: Express $2 \frac{4}{9}$ as an improper fraction.

$$
2 \frac{4}{9}=\frac{9 \times 2+4}{9}=\frac{18+4}{9}=\frac{22}{9}
$$

The improper fraction for 2 4/9 is 22/9.

Changing Improper Fractions to Mixed Numbers

Example 3: Express $\frac{13}{10}$ as a mixed fraction.

Think of $\frac{13}{10}$ as $\frac{10}{10}+\frac{3}{10}$, then as $1+\frac{3}{10}$ because $\frac{10}{10}=1$, then as $1 \frac{3}{10}$.
In this problem, the whole number is $1\left(\frac{10}{10}\right)$ and the remaining part is $\frac{3}{10}$.
*A quick way to find the mixed number is to divide the numerator by the denominator and express the remainder as a fraction.

The mixed number for $13 / 10$ is $13 / 10$.

Example 4: Express $\frac{27}{15}$ as a mixed fraction.

The fraction must be simplified.

$$
1 \frac{12}{15}=1 \frac{12 \div 3}{15 \div 3}=1 \frac{4}{5}
$$

The mixed number for $27 / 15$ is $14 / 5$.

Multiplication of Fractions

Multiplying Fractions

To multiply fractions, multiply the numerators and multiply the denominators. Simplify the fractions when necessary.
numerator - A numerator is the top part of a fraction. In the fraction $2 / 3$, the numerator is two $\left(\frac{2}{3}\right)$.
denominator - A denominator is the bottom part of a fraction. In the fraction $2 / 3$, the denominator is three $\left(\frac{2}{3}\right)$.
proper fraction - A proper fraction is a fraction where the numerator is less than the denominator. An example of a proper fraction is $\frac{7}{8}$.
*Recall that the answer to a multiplication problem is called the product.

Example 1: Find the product of the proper fractions, $2 / 3 \times 8 / 9$.

$$
\frac{2}{3} \times \frac{8}{9}=\frac{2 \times 8}{3 \times 9}=\frac{16}{27} \quad\left[\begin{array}{l}
\text { Multiply the numerators. } \\
\text { Multiply the denominators. }
\end{array}\right)
$$

Multiplication of fractions can be made easier by using canceling to simplify first, and then multiplying the numerators and the denominators.

Canceling

Look for a numerator and a denominator that will simplify.

Example 2: Find the product of proper fractions, $3 / 4 \times 8 / 11$.

Example 3: Find the product of $2 / 3$ of 9.

Multiplying Mixed Numbers

improper fraction - An improper fraction is a fraction where the numerator is larger than or equal to the denominator. An example of an improper fraction is $\frac{12}{5}$.
mixed number - A mixed number is a number that is a combination of a whole number and a fraction. An example of a mixed number is $2 \frac{2}{5}$.
*To multiply mixed numbers, first change the mixed numbers to improper fractions.

Example 4: Find the improper fractions for 1 1/11 and 2 4/9.
*Multiply the denominator by the whole number, and then add on the numerator. Put that number over the denominator.

$$
1 \frac{1}{11}=\frac{11 \times 1+1}{11}=\frac{12}{11} \quad 2 \frac{4}{9}=\frac{9 \times 2+4}{9}=\frac{22}{9}
$$

Example 5: Find the product of the mixed numbers, $11 / 11 \times 24 / 9$.
In the previous problem, the two mixed numbers are expressed as improper fractions. ($11 / 11=12 / 11$ and $24 / 9=22 / 9$)

$$
\frac{12}{11} \times \frac{22}{9}=\frac{\not 22^{4}}{\not 1_{1}} \times \frac{22^{2}}{\not \Phi_{3}}=\frac{8}{3}=2 \frac{2}{3}
$$

(Cancel the 11 and 22 by 11 .)
Cancel the 12 and 9 by 3 .
(Think of a number that will divide into 12 and 9 evenly. That number is 3 .

Multiplying Multiple Fractions

Example 6: Find the product of the proper fractions $9 / 16 \times 5 / 8 \times 2 / 3$.
Simplify through canceling, and then multiply the numerators and denominators.
*With multiple fractions, cancel any numerator with any denominator.

Look for a numerator and a denominator that will simplify.

$$
\left.\begin{array}{ll}
\frac{\phi^{3}}{20} \times \frac{5}{8} \times \frac{2}{\beta^{1}} & \text { First cancel the } 9 \text { and } 3 .
\end{array}\right)
$$

