MULTIPLY FRACTIONS

This unit is about multiplication of fractions and mixed numbers. The technique of cancelling will also be discussed to show a way to simplify computations.

Estimate Products

Modeling Multiplication of Fractions

Mixed Numbers (Review)

Multiplication of Fractions

Estimate Products

When two numbers are multiplied together, the result is called the **product** of the two numbers.

Estimation is used to approximate an answer to a math problem when an exact answer is not required.

Example 1: Mr. Saddler is building a rectangular fence to enclose the field for his new horses. After measuring the length and width of the field, he found that the length of the field was $89\frac{7}{9}$ meters and the width was $75\frac{1}{5}$ meters.

Mr. Saddler's neighbor asked, "*About* how much area will the horses have to roam?"

Since his neighbor asked *about how much*, Mr. Saddler used estimation to answer his neighbor's question.

Step 1: Determine the formula to use for finding the area of the field, and then set up the problem.

$$A = l \times w$$
$$A = 89\frac{7}{9} \times 75\frac{1}{5}$$

Step 2: Round each mixed number to the nearest whole number.

For
$$89\frac{7}{9}$$
 find the fraction that represents 1/2 in 9ths.

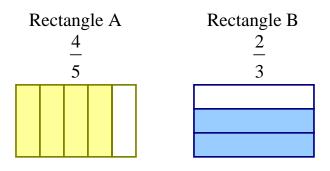
$$\left(\frac{1}{2} \text{ of } 9 \text{ is } 4.5 \quad 2 \overline{)9.0} \quad \text{ so, } \frac{1}{2} = \frac{4.5}{9}\right)$$
Since $\frac{7}{9}$ is greater than $\frac{4.5}{9}$, $89\frac{7}{9}$ rounds up to 90.

For
$$75\frac{1}{5}$$
 find the fraction that represents 1/2 in 5ths.

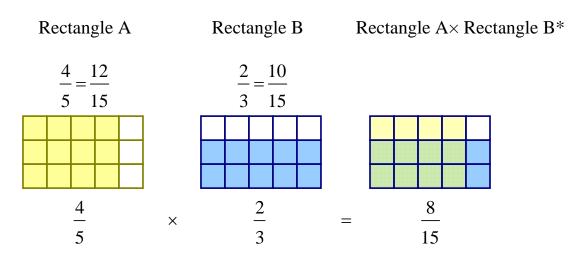
$$\left(\frac{1}{2} \text{ of 5 is } 2.5 \qquad 2 \xrightarrow{5.0} \text{ so, } \frac{1}{2} = \frac{2.5}{5}\right)$$

Since $\frac{1}{5}$ is less than $\frac{2.5}{5}$, $75\frac{1}{5}$ rounds to 75.

Step 3: Solve the problem using the rounded numbers.


$$A = l \times w$$
 $A \approx 90 \times 75$ \approx is the symbol for "approximately equal to" $A \approx 6750$

The field for the horses to roam will have an area of about 6750 square meters.



Modeling Multiplication of Fractions

In the model below, the fraction 4/5 is represented in Rectangle A (yellow) and 2/3 is represented in Rectangle B (blue).

To show multiplication through the models, each rectangle is divided into 15ths, since 15 is a common denominator of 5 and 3.

The *eight* green squares show the areas that overlap between Rectangle A and Rectangle B; thus, the overlapping area (8/15) represents the product of 4/5 and 2/3.

$$\frac{4}{5} \times \frac{2}{3} = \frac{4 \times 2}{5 \times 3} = \frac{8}{15}$$

Mixed Numbers

Mixed numbers are numbers that have a whole number and a fraction.

Examples of Mixed Numbers:	$2\frac{2}{-}$	$7\frac{5}{-}$	$29\frac{3}{2}$
	3	8	4

Improper fractions are fractions where the numerator is larger than the denominator.

Examples of Improper Fractions:	8	61	119
	—		
	3	8	4

When working with fractions, it is necessary to know how to convert mixed numbers to improper fractions and vice versa.

Changing Mixed Numbers to Improper Fractions

Example 1: Express $1\frac{5}{12}$ as an improper fraction. $1\frac{5}{12} = 1 + \frac{5}{12} = \frac{12}{12} + \frac{5}{12} = \frac{12+5}{12} = \frac{17}{12}$

*A quick way to find the improper fraction is to multiply the denominator by the whole number, and add on the numerator. Then, place that number over the denominator.

$$1\frac{5}{12} = \frac{12 \times 1 + 5}{12} = \frac{12+5}{12} = \frac{17}{12}$$

The improper fraction for 1 5/12 is 17/12.

Example 2: Express $2\frac{4}{9}$ as an improper fraction.

$$2\frac{4}{9} = \frac{9 \times 2 + 4}{9} = \frac{18+4}{9} = \frac{22}{9}$$

The improper fraction for 2 4/9 is 22/9.

Changing Improper Fractions to Mixed Numbers

Example 3: Express $\frac{13}{10}$ as a mixed fraction. Think of $\frac{13}{10}$ as $\frac{10}{10} + \frac{3}{10}$, then as $1 + \frac{3}{10}$ because $\frac{10}{10} = 1$, then as $1\frac{3}{10}$. In this problem, the whole number is $1(\frac{10}{10})$ and the remaining part is $\frac{3}{10}$.

*A quick way to find the mixed number is to divide the numerator by the denominator and express the remainder as a fraction.

The mixed number for 13/10 is 13/10.

Example 4: Express $\frac{27}{15}$ as a mixed fraction.

The fraction must be simplified.

$$1\frac{12}{15} = 1\frac{12 \div 3}{15 \div 3} = 1\frac{4}{5}$$

The mixed number for 27/15 is 1 4/5.

Multiplication of Fractions

Multiplying Fractions

To multiply fractions, multiply the numerators and multiply the denominators. Simplify the fractions when necessary.

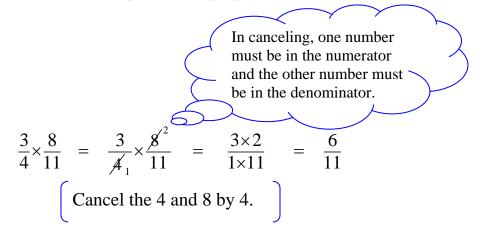
numerator – A numerator is the top part of a fraction. In the fraction 2/3, the numerator is two $\left(\frac{2}{3}\right)$.

denominator – A denominator is the bottom part of a fraction. In the fraction 2/3, the denominator is three $\left(\frac{2}{3}\right)$.

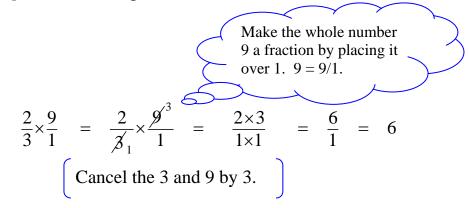
proper fraction – A proper fraction is a fraction where the numerator is less than the denominator. An example of a proper fraction is $\frac{7}{8}$.

*Recall that the answer to a multiplication problem is called the **product**.

Example 1: Find the product of the proper fractions, $2/3 \times 8/9$.


 $\frac{2}{3} \times \frac{8}{9} = \frac{2 \times 8}{3 \times 9} = \frac{16}{27}$ Multiply the numerators. Multiply the denominators.

Multiplication of fractions can be made easier by using canceling to simplify first, and then multiplying the numerators and the denominators.


Canceling

Look for a numerator and a denominator that will simplify.

Example 2: Find the product of proper fractions, $3/4 \times 8/11$.

Example 3: Find the product of 2/3 of 9.

Multiplying Mixed Numbers

improper fraction – An improper fraction is a fraction where the numerator is larger than or equal to the denominator. An example of an improper fraction is $\frac{12}{5}$.

mixed number – A mixed number is a number that is a combination of a whole number and a fraction. An example of a mixed number is $2\frac{2}{5}$.

*To multiply mixed numbers, first change the mixed numbers to improper fractions.

Example 4: Find the improper fractions for 1 1/11 and 2 4/9.

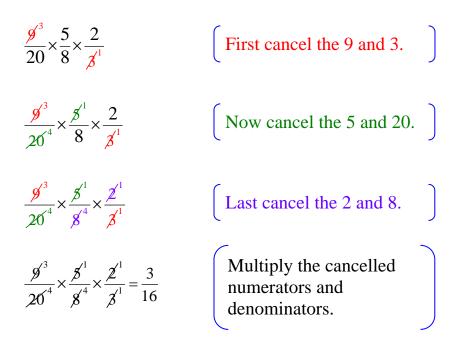
*Multiply the denominator by the whole number, and then add on the numerator. Put that number over the denominator.

$$1\frac{1}{11} = \frac{11 \times 1 + 1}{11} = \frac{12}{11} \qquad 2\frac{4}{9} = \frac{9 \times 2 + 4}{9} = \frac{22}{9}$$

Example 5: Find the product of the mixed numbers, $1 \frac{1}{11} \times 2 \frac{4}{9}$.

In the previous problem, the two mixed numbers are expressed as improper fractions. $(1 \ 1/11 = 12/11 \text{ and } 2 \ 4/9 = 22/9)$

$$\frac{12}{11} \times \frac{22}{9} = \frac{12}{11} \times \frac{22}{9} = \frac{8}{3} = 2\frac{2}{3}$$
Cancel the 11 and 22 by 11.
Cancel the 12 and 9 by 3.
(Think of a number that will divide into 12 and 9 evenly. That number is 3.


Multiplying Multiple Fractions

Example 6: Find the product of the proper fractions $9/16 \times 5/8 \times 2/3$.

Simplify through canceling, and then multiply the numerators and denominators.

*With multiple fractions, cancel any numerator with any denominator.

Look for a numerator and a denominator that will simplify.

