I NSCRI BED ANGLES, TANGENTS, AND SECANTS

In this unit, you will learn about inscribed angles, tangents, and secants. You will explore the relationship between inscribed angles and their intercepted arcs. You will investigate polygons inscribed in circles and polygons circumscribed about circles. You will learn about a point of tangency and examine lines that are tangent to circles and how they relate to radii. You will learn about secants and their connection with arcs, arc measure, and tangents.

Inscribed Angles
Tangents
Secants

Construction of an Inscribed Hexagon

I nscribed Angles

inscribed angle - An inscribed angle in a circle is an angle that has its vertex located on the circle and its rays are chords.
intercepted arc - An intercepted arc is an arc that lies in the interior of an inscribed angle and is formed by the intersection of the rays of an inscribed angle with the circle.

$\angle A B C$ is an inscribed angle.
$A D C$ is an intercepted arc of $\angle A B C$.

*Note: $A D C$ lies in the interior of $\angle A B C$.

Theorem 25-A
If an angle is inscribed in a circle, then the measure of the angle is one-half the measure of the intercepted arc.

There are three cases to this proof.

Let's take a look at the case where the center of the circle lies on one of the rays of the inscribed angle.

Case 1: The center of the circle lies on one of the rays of the inscribed angle. (In the figure below, center point P lies on inscribed $\angle A B C$.)

Given: $\quad \square \mathrm{P}$, Inscribed $\angle A B C$
Prove: $\quad m \angle A B C=\frac{1}{2} m A C$
*Numbers have been used to make easy reference to the angles.

Statement

Draw radius $P A$.
$m \angle 4=m \angle 1+m \angle 2$
$\overline{P B} \cong \overline{P A}$
$m \angle 2=m \angle 1$
$m \angle 4=m \angle 1+m \angle 1$
$m \angle 4=2(m \angle 1)$
$\frac{1}{2}(m \angle 4)=m \angle 1$
$m \angle 1=\frac{1}{2}(m \angle 4)$
$m \angle 4=m A C$
$m \angle 1=\frac{1}{2} m A C$
$\therefore m \angle A B C=\frac{1}{2} m A C$

Reason

Radius PA is added as an auxilary line.
Exterior Angle Theorem
Radii of the same circle are congruent.
Angles that are opposite congruent sides in a triangle are congruent.
Substitution
Simplify
Division

Symmetric Property of Equality
Definition of Arc Measure
Substitution

In Case 2, the center of the circle lies within the inscribed angle.
Case 2: The center of the circle lies in the interior of the inscribed angle. (In the figure below, center point P lies in the interior of inscribed $\angle A B C$.)

A similar proof could be developed as illustrated for Case 1.
Example 1: If the measurement of $\angle A B C=56^{\circ}$, what is the measure of $A C$?

$$
\begin{array}{ll}
m \angle A B C=\frac{1}{2} m A C & \text { Theorem 25-A } \\
\text { Let } x=m A C . & \\
56^{\circ}=\frac{1}{2} x & \text { Substitution } \\
112^{\circ}=x & \text { Multiplication Property } \\
m A C=112^{\circ} &
\end{array}
$$

In Case 3 the center of the circle lies outside of the inscribed angle.
Case 3: The center of the circle lies in the exterior of the inscribed angle. (In the figure below, center point P lies in the exterior of inscribed $\angle A B C$.)

A similar proof could be developed as illustrated for Case 1.
Example 2: If the measurement of $A C=139^{\circ}$, what is the measure of $\angle A B C$?

$$
\begin{array}{ll}
m \angle A B C=\frac{1}{2} m A C & \text { Theorem 25-A } \\
m \angle A B C=\frac{1}{2}(139) & \text { Substitution } \\
m \angle A B C=69.5^{\circ} & \text { Simplify }
\end{array}
$$

Theorem 25-A holds true for all three of these cases; that is, the measurement of an inscribed angle is $1 / 2$ the measure of its intercepted arc.

Theorem 25-B

If two inscribed angles intercept the same arc, then the angles are congruent.

Example 3: In the figure below, what angle is congruent to $\angle P T R$?

$\angle P T R$ intercepts $P R$.
$\angle R N P$ intercepts $P R$.
$\therefore \angle R N P \cong \angle P T R$

Theorem 25-C

Theorem 25-B The inscribed angles are congruent because they intercept the same arc.

An angle that is inscribed in a circle is a right angle if and only if its intercepted arc is a semicircle.

FKL is a semicircle.
$\angle J K L$ is an inscribed angle.
$m J K L=180^{\circ}$
$m \angle J K L=90^{\circ}$

Given
Given
Definition of arc measure
Theorem 25-A
inscribed polygon - An inscribed polygon within a circle is a polygon whose vertices lie on the circle.

Theorem 25-D

If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

Example 4: Take any pair of opposite angles in the quadrilateral RSTU and explain Theorem 25-D.

We will organize the answer into statements and reasons.

Statement

$\angle R S T$ and $\angle R U T$ are opposite angles in quadrilateral RSTU.
$\angle R S T$ is an inscribed angle of $R U T$.
$m \angle R S T=\frac{1}{2} m R U T$
$\angle R U T$ is an inscribed angle of $R S T$.
$m \angle R U T=\frac{1}{2} m R S T$
$m \angle R S T+m \angle R U T=\frac{1}{2} m R U T+\frac{1}{2} m R S T$
$m \angle R S T+m \angle R U T=\frac{1}{2}(m R U T+m R S T)$
$m R U T+m R S T=360^{\circ}$
$m \angle R S T+m \angle R U T=\frac{1}{2}\left(360^{\circ}\right)$
$m \angle R S T+m \angle R U T=180^{\circ}$
$m \angle R S T$ and $m \angle R U T$ are supplementary angles.

Reason

Given

Definition of Inscribed Angle
Theorem 25-A
Definition of Inscribed Angle
Theorem 25-A

Addition Property
Distributive Property
Definition of Arc Measure
Substitution
Simplify
Defintion of Supplementary Angles

Therefore, opposite angles $\angle R S T$ and $\angle R U T$ of quadrilateral $R S T U$ are supplementary angles.

Example 5: For inscribed quadrilateral $R S T U$, if $\angle R S T$ measures 125° and $\angle S T U$ measures 95°, then find the measures of $\angle T U R$ and $\angle U R S$.

$\angle R S T$ and $\angle T U R$ are opposite angles and are supplementary by Theorem 25-D.
$m \angle R S T+m \angle T U R=180^{\circ}$
$125^{\circ}+m \angle T U R=180^{\circ}$
$m \angle T U R=55^{\circ}$

Definition of Supplementary Angles
Substitution
Subtraction
$\angle S T U$ and $\angle U R S$ are opposite angles and are supplementary by Theorem 25-D.
$m \angle S T U+m \angle U R S=180^{\circ}$
$95^{\circ}+m \angle U R S=180^{\circ}$
$m \angle U R S=85^{\circ}$

To check the answers:

$$
\begin{array}{ll}
m \angle R S T+m \angle S T U+m \angle T U R+m \angle U R S=360^{\circ} & \text { The four angles of a quadrilateral total } 360^{\circ} . \\
125^{\circ}+95^{\circ}+55^{\circ}+85^{\circ}=360^{\circ} & \text { Substitution } \\
360^{\circ}=360^{\circ} & \text { Simplify }
\end{array}
$$

Angles $T U R$ and $U R S$ measure 55 degrees and 85 degrees, respectively.

Example 6: For inscribed quadrilateral $J K L M$, find the size of angles K, L, and M.

$m \angle M+m \angle K=180$
$4 x+5 x=180$
$9 x=180$
$x=20$
$\angle M=4 x=4(20)=80^{\circ}$
$\angle K=5 x=5(20)=100^{\circ}$
$\angle J+\angle L=180^{\circ}$
$107^{\circ}+\angle L=180^{\circ}$
$\angle L=73^{\circ}$

Theorem 25-D and Definition of Supplementary Angles
Substitution
Simplify
Division Property
Substitution
Substitution
Theorem 25-D and Definition of Supplementary Angles
Substitution
Subtraction

To check the answers:
$m \angle J+m \angle K+m \angle L+m \angle M=360^{\circ}$ The four angles of a quadrilateral total 360°.
$107^{\circ}+100^{\circ}+73^{\circ}+80^{\circ}=360^{\circ} \quad$ Substitution
$360^{\circ}=360^{\circ} \quad$ Simplify

Angles M, K, and L measure 80, 100, and 73 degrees, respectively.

Tangents

tangent line - A tangent line to a circle is a line that intersects the circle at exactly one point. (It appears to brush the edge of a circle.)
point of tangency - A point of tangency is the point where a tangent line intersects with a circle.

Example 1: The drawing below shows how the sun, moon, and earth are aligned for a solar eclipse. Identify the tangents lines which partition an area on the earth that experiences a total solar eclipse.

The pink area, the area between $\overline{E F}$ and $\overline{H I}$, is the area that experiences the total solar eclipse. One tangent line, $\overline{D E}$, that creates this area, is drawn from the upper most point on the sun, point D , through the uppermost point on the moon, point E , to the earth, point F . The second tangent line, $\overline{G H}$, that creates the area that experiences the total solar eclipse, is drawn from the lowest point on the sun, point G, through the lowest point on the moon, Point H, to the earth, point I.

Theorem 25-E
If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.

Study the diagram to the left. $\overline{A B}$ is shorter than $\overline{A C}$. $\overline{A D}$ is longer than $\overline{A C}$. Any segment other than $\overline{A C}$ drawn to tangent $\stackrel{\rightharpoonup C}{ }$ will be longer than $\overrightarrow{A C}$. The shortest segment from a point to a line is a perpendicular segment. Thus, radius $\overline{A C} \perp \stackrel{\rightharpoonup}{D C}$.

Example 2: Find x for the given information.

Given:
$\square T$
Tangent RS = 13
Radius ST $=6$

By theorem 25-E, $\overline{S T} \perp \overline{R S}$; thus, $\square R S T$ is a right triangle.
$(13)^{2}+(6)^{2}=x^{2}$
$169+36=x^{2}$
$205=x^{2}$
$x=\sqrt{205}$
$x \approx 14.3$

Pythagorean Theorem
Simplify
Simplfiy
Take the square root of both sides of the equation.
Simplify

Theorem 25-F (Converse of 25-E)

Example 3: Determine if $\overline{B C}$ is a tangent line to circle A.

Step 1: First determine the length of $A C$.
$A D=7$
$C D+D A=A C$
$18+7=A C$
$A C=25$
$\overline{A D}$ and $\overline{A B}$ are radii; therefore they are congruent.
Segment Addition
Substitution
Simplify

Step 2: Prove that $\overline{A B} \perp \overline{B C}$ (Theorem 25-F) by showing that $\square \mathrm{ABC}$ is a right triangle and that $\overline{\mathrm{AB}}$ and $\overline{\mathrm{BC}}$ are the legs.
$(7)^{2}+(24)^{2}=(25)^{2} \quad$ Pythagorean Theorem $(A B=7, B C=24, A C=25)$
$49+576=625 \quad$ Simplify
$625=625 \quad$ Simplfiy

Thus, $\square A B C$ is a right triangle and segments $\overline{A B}$ and $\overline{B C}$ are the perpendicular legs.
common tangent - A common tangent is a line or line segment that is tangent to two circles in the same plane.

There are two types of common tangents: common external tangents and common internal tangents.

Common External Tangent

Common external tangents do not intersect the segment that has its endpoints on the centers of the two circles. Lines n and m are common external tangents for $\square A$ and $\square B$.

Common I nternal Tangent

Common internal tangents intersect the segment that has its endpoints on the centers of the two circles. Lines p and q are common internal tangents for $\square G$ and $\square H$.

Example 4: Let's revisit our diagram of the solar eclipse in example 1. A reddotted line has been added to represent the line segment that has its endpoints on the centers of the sun and the moon. Identify the common external tangents between the sun and the moon, and then identify the common internal tangents between the sun and the moon.

The common internal tangents are $\overline{\mathrm{DH}}$ and $\overline{\mathrm{GE}}$.
They DO intersect the red dotted line.

Theorem 25-G
If two segments from the same exterior point are tangent to a circle, then the two segments are congruent.

circumscribed polygon - A circumscribed polygon about a circle is a polygon in which all of its sides are tangents to the circle.

Example 5: Triangle $L M N$ is circumscribed around circle T. Segments LQ, MR, and SN measure 12.8, 11.3, and 5 centimeters, respectively. Find the perimeter of triangle LMN.

We will apply Theorem 25-G to solve this problem.

$$
\begin{aligned}
& N R=N S=5 \\
& M Q=M R=11.3 \\
& L S=L Q=12.8
\end{aligned}
$$

Perimeter $=L Q+L S+N S+N R+M R+M Q \quad$ Definition of Perimeter
Perimeter $=12.8+12.8+5+5+11.3+11.3 \quad$ Substitution
Perimeter $=2(12.8)+2(5)+2(11.3)$
Simplify
Perimeter $=58.2$
The perimeter of $\square L M N$ is 58.2 centimeters.

Secants

secant - A secant is a line that intersects a circle in exactly two points. A secant of a circle contains a chord of the circle.

[^0]If a secant and a tangent intersect at the point of tangency, then the measure of each angle formed is one-half the measure of its intercepted arc.

Example 1: In the given diagram, arc DB measures 73 degrees. Point B is a point of tangency for line AC. Find the measure of angles ABD and CBD.

Now check the measure of $\angle C B D$ by applying Theorem 25-H.

$$
\begin{array}{ll}
m B E D=360-m D B & \text { Arc Measure } \\
m B E D=360-73 & \text { Substitution } \\
m B E D=287^{\circ} & \text { Simplify } \\
m \angle C B D=\frac{1}{2} m B E D & \text { Theorem 25-H } \\
m \angle C B D=\frac{1}{2}(287) & \text { Substitution } \\
m \angle C B D=143.5^{\circ} & \text { Simplify }
\end{array}
$$

Angle ABD measures 36.5 degrees and angle CBD measures 143.5 degrees.

Theorem 25-I
If two secants intersect in the interior of a circle, then the measure of an angle formed is one-half the sum of the measures of the arcs intercepted by the angle and its vertical angle.

$$
\begin{aligned}
& m \angle 1=\frac{1}{2}(m \varnothing D+m A B) \\
& m \angle 3=\frac{1}{2}(m A B+m \varnothing D) \\
& m \angle 2=\frac{1}{2}(m B D+m A C) \\
& m \angle 4=\frac{1}{2}(m A C+m B D)
\end{aligned}
$$

Example 2: In circle E above, determine the measure of angle 3 if ΘD measures 78 degrees and $A B$ measures 40 degrees.

$$
\begin{array}{ll}
m \angle 3=\frac{1}{2}(m A B+m \varnothing D) & \\
\text { Theorem 25-I } \\
m \angle 3=\frac{1}{2}(40+78) & \text { Substitution } \\
m \angle 3=59^{\circ} & \\
\text { Simplify }
\end{array}
$$

The measurement of angle 3 is 59 degrees.

The measure of an angle formed by two secants, a secant and a tangent, or two tangents intersecting in the exterior of a circle is equal to one-half the positive difference of the measures of the intercepted arcs.

Theorem 25-J (Case 1): Secant-Secant

Example 3: In circle H above, find the measure of $D F$ if angle C measures 23 degrees and $E G$ measures 100 degrees.

$$
m \angle C=\frac{1}{2}(m E G-m D F) \quad \text { Theorem 25-J }
$$

Let $x=m D F$.
$23=\frac{1}{2}(100-x) \quad$ Substitution
$46=100-x \quad$ Multiply both sides of the equation by 2.
$-54=-x \quad$ Subtract 100 from both sides of the equation.
$54=x \quad$ Muliply both sides of the equation by -1.
$m D F=54^{\circ}$

The measurement of $D F$ is 54 degrees.

Theorem 25-J (Case 2): Secant-Tangent

Example 4: In circle Y above, find the measure of $W X T$ if angle V measures 49 degrees and $W U$ measures 93 degrees.

$$
m \angle V=\frac{1}{2}(m W X T-m W U) \quad \text { Theorem 25-J }
$$

Let $x=m W X T$.
$49=\frac{1}{2}(x-93) \quad$ Substitution
$98=x-93 \quad$ Multiply both sides of the equation by 2.
$191=x \quad$ Add 93 to both sides of the equation.
$m W X T=191^{\circ}$

The measurement of $W X T$ is 191 degrees.

Theorem 25-J (Case 3): Tangent-Tangent

Example 5: In circle N above, find the measure of angle K if arc LMJ measures 240 degrees.

Step 1: Find the measure of $モ J$.
$\pm M J+E J=360$
$240+$ E $J=360$

Step 2: Apply Theorem 25-J to determine the measure of $\angle \mathrm{K}$.
$m \angle K=\frac{1}{2}(m \Xi M J-m E J) \quad$ Theorem 25-J
$m \angle K=\frac{1}{2}(240-120) \quad$ Substitution
$m \angle K=60^{\circ} \quad$ Simplify

The measurement of angle K is 60 degrees.

Construction of an Inscribed Hexagon

The illustration below shows the steps for inscribing a regular hexagon within a circle.
Step 1: Start by drawing a circle G with a compass.
Step 2: Without changing the setting on the compass, start anywhere on the circle and name the point A. Draw an arc that intersects the circle and name the point of intersection, B.

Step 3: Move the compass metal point to the point of intersection of the arc just drawn and draw another arc. Continue around the circle and draw six arcs. Make sure the setting of the compass does not change.

Step 4: Connect the consecutive points of intersection with line segments.
The polygon created is a regular hexagon.

[^0]: Theorem 25-H

