Theorems and Postulates

Postulate 2-A
Protractor Postulate

Definition of Right, Acute and Obtuse Angles

Given $\overrightarrow{A B}$ and a number r between 0 and 180, there is exactly one ray with endpoint A, extending on either side of $\overrightarrow{A B}$, such that the measure of the angle formed is r.

Postulate 2-B
Angle Addition
$\angle A$ is a right angle if $m \angle A$ is $\mathbf{9 0}$.
$\angle A$ is an acute angle if $m \angle A$ is less than 90 .
$\angle A$ is an obtuse angle if $m \angle A$ is greater than 90 and less than 180.

Vertical angles are congruent.

The sum of the measures of the angles in a linear pair is 180°.

The sum of the measures of complementary angles is 90°.

If R is in the interior of $\angle P Q S$, then $m \angle P Q R+m \angle R Q S=m \angle P Q S$.
If $m \angle P Q R+m \angle R Q S=m \angle P Q S$, then R is in the interior of $\angle P Q S$.

Postulate 3-A Ruler

Two points on a line can be paired with real numbers so that, given any two points R and S on the line, R corresponds to zero, and S corresponds to a positive number.

Point R could be paired with 0 , and S could be paired with 10 .

Postulate 3-B
Segment Addition

If N is between M and P , then $\mathrm{MN}+\mathrm{NP}=\mathrm{MP}$.
Conversely, if $\mathrm{MN}+\mathrm{NP}=\mathrm{MP}$, then N is between M and P .

Theorem 4-A
Pythagorean Theorem

Distance Formula

Midpoint Formula Number Line

Midpoint Formula

 Coordinate PlaneIn a right triangle, the sum of the squares of the measures of the legs equals the square of the measure of the hypotenuse.

The distance d between any two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

The midpoint, M, of $\overline{A B}$ is the point between A and B such that $\mathbf{A M}=\mathbf{M B}$.

With endpoints of A and B on a number line, the midpoint of $\overline{A B}$ is $\frac{A+B}{2}$.

In the coordinate plane, the coordinates of the midpoint of a segment whose endpoints have coordinates $\left(\boldsymbol{x}_{1}, y_{1}\right)$ and $\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$ are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

If M is the midpoint of $\overline{\mathrm{PQ}}$, then $\overline{\mathrm{PM}} \cong \overline{\mathrm{MQ}}$.

If $p \Rightarrow q$ is true, and p is true, then q is true.

If $p \Rightarrow q$ is true and $q \Rightarrow r$ is true, then $p \Rightarrow r$ is true.

Any segment or angle is congruent to itself.

$$
\overline{Q S} \cong \overline{Q S}
$$

Postulate 6-B Symmetric Property

Theorem 6-A
Transitive Property

Theorem 6-B
Transitive Property

Theorem 7-A Addition Property

Theorem 7-B
Addition
Property

Theorem 7-C
Addition
Property

Theorem 7-D
Addition
Property

Theorem 7-E
Subtraction Property

If $\overline{A B} \cong \overline{C D}$, then $\overline{C D} \cong \overline{A B}$.
If $\angle C A B \cong \angle D O E$, then $\angle D O E \cong \angle C A B$.

If any segments or angles are congruent to the same angle, then they are congruent to each other.

If $\overline{A B} \cong \overline{C D}$ and $\overline{C D} \cong \overline{E F}$, then $\overline{A B} \cong \overline{E F}$. If $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$.

If any segments or angles are congruent to each other, then they are congruent to the same angle. (This statement is the converse of Theorem 6-A.)

If a segment is added to two congruent segments, then the sums are congruent.

If an angle is added to two congruent angles, then the sums are congruent.

If congruent segments are added to congruent segments, then the sums are congruent.

If congruent angles are added to congruent angles, then the sums are congruent.

If a segment is subtracted from congruent segments, then the differences are congruent.

Theorem 7-F
Subtraction Property

Theorem 7-G

Subtraction Property

Theorem 7-H

 Subtraction Property
Theorem 7-I Multiplication Property

Theorem 7-J Multiplication Property

Theorem 7-K Division Property

Theorem 7-L
Division Property

Theorem 10-A

Theorem 10-B

If an angle is subtracted from congruent angles, then the differences are congruent.

If congruent segments are subtracted from congruent segments, then the differences are congruent.

If congruent angles are subtracted from congruent angles, then the differences are congruent.

If segments are congruent, then their like multiples are congruent.

If angles are congruent, then their like multiples are congruent.

If segments are congruent, then their like divisions are congruent.

If angles are congruent, then their like divisions are congruent.

Congruence of angles is reflexive, symmetric, and transitive.

If two angles form a linear pair, then they are supplementary angles.

Theorem 10-D

Theorem 10-E

Theorem 10-F

Theorem 10-G

Theorem 10-H

Theorem 10-I

Postulate 10-A

Theorem 10-J

Angles supplementary to the same angle are congruent.

Angles supplementary to congruent angles are congruent.

Angles complementary to the same angle are congruent.

Angles complementary to congruent angles are congruent.

Right angles are congruent.

Vertical angles are congruent.

Perpendicular lines intersect to form right angles.

If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.

If two parallel lines are cut by a transversal, then each of the pair of alternate interior angles is congruent.

Theorem 10-L

Theorem 10-M

If two parallel lines are cut by a transversal, then each pair of alternate exterior angles is congruent.

If two parallel lines are cut by a transversal, then each pair of consecutive interior angles is supplementary.

If two parallel lines are cut by a transversal that is perpendicular to one of the parallel lines, then the transversal is perpendicular to the other parallel line.

The definition of slope states that, given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the slope of a line containing the points can be determined using this formula:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { when } x_{2}-x_{1} \neq 0
$$

Postulate 11-A

Postulate 11-B

Postulate 11-C

Postulate 11-D

Theorem 11-A

Theorem 11-B

Two non-vertical lines have the same slope if and only if they are parallel.

Two non-vertical lines are perpendicular if and only if the product of their slopes is $\mathbf{- 1}$.

If two lines in a plane are cut by a transversal and the corresponding angles are congruent, then the lines are parallel.

If there is a line and a point that is not on the line, then there exists exactly one line that passes through the point that is parallel to the given line.

If two lines in a plane are cut by a transversal and the alternate interior angles are congruent, then the lines are parallel.

If two lines in a plane are cut by a transversal and the alternate exterior angles are congruent, then the lines are parallel.

Theorem 11-C

Theorem 11-D

If two lines in a plane are cut by a transversal and the consecutive interior angles are supplementary, then the lines are parallel.

If two lines in a plane are perpendicular to the same line, then the lines are parallel.

The distance from a point, which is not on a line, and a line is the length of a line segment that is perpendicular from the point to the line.

The distance between two parallel lines is the distance between one line and any point on the other line.

Theorem 12-A
Angle Sum
Theorem

Theorem 12-B
Third Angle
Theorem

Theorem 12-C
Exterior Angle
Theorem

Corollary 12-A-1

Corollary 12-A-2
There can be at most one right angle in triangle.

Corollary 12-A-3 There can be at most one obtuse angle in triangle.

The measure of each angle in an equiangular triangle is 60.

Definition of Congruent Triangles (CPCTC)

Two triangles are congruent if and only if their corresponding parts are congruent.

> Postulate 12-A

Postulate 13-A
SSS Postulate

Any segment or angle is congruent to itself. (Reflexive Property)

If the sides of a triangle are congruent to the sides of a second triangle, then the triangles are congruent.

SSS
The three sides of one triangle must be congruent to the three sides of the other triangle.

Postulate 13-B
SAS Postulate

If two sides and the included angle of a triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent.

SAS	Two sides and the included angle of one triangle must be congruent to two sides and the included angle of the other triangle.

Postulate 13-C

ASA Postulate

If two angles and the included side of a triangle are congruent to the two angles and included side of a second triangle, then the triangles are congruent.

ASA	Two angles and the included side of one triangle must be congruent to two angles and the included side of the other triangle.

Theorem 13-A
AAS Theorem

If two angles and a non-included side of a triangle are congruent to two angles and a non-included side of a second triangle, then the two triangles are congruent.

AAS	Two angles and a non-included side of one triangle must be congruent to the corresponding two angles and side of the other triangle.

Theorem 13-B
I sosceles Triangle Theorem

Theorem 13-C

Corollary 13-B-1

Corollary 13-B-2

Postulate 14-A
HL Postulate

If two sides of a triangle are congruent, then the angles that are opposite those sides are congruent.

If two angles of a triangle are congruent, then the sides that are opposite those angles are congruent.

A triangle is equilateral if and only if it is equiangular.

Each angle of an equilateral triangle measures 60°.

If there exists a correspondence between the vertices of two right triangles such that the hypotenuse and a leg of one triangle are congruent to the corresponding parts of the second triangle, then the two right triangles are congruent.

The shortest distance between two points is a straight line.

Postulate 14-B

Theorem 14-A

A line segment is the shortest path between two points.

A point on a perpendicular bisector of a segment is equidistant from the endpoints of the segment.

Theorem 14-B

Theorem 14-C

Theorem 14-D

A point that is equidistant from the endpoints of a segment lies on the perpendicular bisector of the segment.

A point on the bisector of an angle is equidistant from the sides of the angle.

A point that is in the interior of an angle and is equidistant from the sides of the angle lies on the bisector of the angle.

Comparison Property	$a<b, a=b$, or $a>b$.

Transitive Property

1. If $a<b$ and $b<c$, then $a<c$.
2. If $a>b$ and $b>c$, then $a>c$.

Addition Property	1. If $a>b$, then $a+c>b+c$. 2. If $a<b$, then $a+c<b+c$.

Subtraction Property

1. If $a>b$, then $a-c>b-c$.
2. If $a<b$, then $a-c<b-c$.

	1. If $c>0$ and $a<b$, then $a c<b c$.
Multiplication	2. If $c>0$ and $a>b$, then $a c>b c$.
Properties	3. If $c<0$ and $a<b$, then $a c>b c$.
	4. If $c<0$ and $a>b$, then $a c<b c$.

Division Properties

1. If $c>0$ and $a<b$, then $\frac{a}{c}<\frac{b}{c}$.
2. If $c>0$ and $a>b$, then $\frac{a}{c}>\frac{b}{c}$.
3. If $c<0$ and $a<b$, then $\frac{a}{c}>\frac{b}{c}$.
4. If $c<0$ and $a>b$, then $\frac{a}{c}<\frac{b}{c}$.

Theorem 15-A
Exterior Angle I nequality Theorem

If an angle is an exterior angle of a triangle, then its measure is greater than the measure of either of its remote interior angles.

Theorem 15-B

Theorem 15-C

Theorem 15-D

Theorem 15-E Triangle I nequality Theorem

Theorem 15-F
SAS I nequality (Hinge Theorem)

Theorem 15-G SSS I nequality

Theorem 16-A

Theorem 16-B

If a side of a triangle is longer than another side, then the measure of the angle opposite the longer side is greater than the measure of the angle opposite the shorter side.

In a triangle, if the measure of an angle is greater than the measure of a second angle, then the side that is opposite the larger angle is longer than the side opposite the smaller angle.

The shortest segment from a point to a line is a perpendicular line segment between the point and the line.

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

If two sides of a triangle are congruent to two sides of a second triangle, and if the included angle of the first triangle is greater than the included angle in the second triangle, then the third side of the first triangle is longer than the third side of the second triangle.

If two sides of a triangle are congruent to two sides of a second triangle, and if the third side in the first triangle is longer than the third side in the second triangle, then the included angle between the congruent sides in the first triangle is greater than the included angle between the congruent sides in the second triangle.

The opposite sides of a parallelogram are congruent.

The opposite angles of a parallelogram are congruent.

The consecutive pairs of angles of a parallelogram are supplementary.

Theorem 16-E

Theorem 16-F

Theorem 16-G

Theorem 16-H

Theorem 16-I

Theorem 16-J

Theorem 16-K

Theorem 19-A

The diagonals of a parallelogram bisect each other.

Either diagonal of a parallelogram separates the parallelogram into two congruent triangles.

In a quadrilateral if both pairs of opposite sides are congruent, then the quadrilateral is a parallelogram.

In a quadrilateral if both pairs of opposite angles are congruent, then the quadrilateral is a parallelogram.

In a quadrilateral if its diagonals bisect each other, then the quadrilateral is a parallelogram.

In a quadrilateral if one pair of opposite sides is both congruent and parallel, then the quadrilateral is a parallelogram.

If a parallelogram is a rectangle, then its diagonals are congruent.

If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.

Theorem 19-B

Theorem 19-C

Theorem 19-D

Theorem 19-E

Theorem 19-F
Mid-Segment
Theorem The diagonals of a rhombus are perpendicular.

If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.

In an isosceles trapezoid, both pairs of base angles are congruent.

In an isosceles trapezoid, the diagonals are congruent.

The median of a trapezoid is parallel to the bases and its length is one-half the sum of the lengths of the bases.

Theorem 19-G The diagonals of a kite are perpendicular.

Equality of Cross Products

For any real numbers, a, b, c, and d, where b and d are not equal to zero, $\frac{a}{b}=\frac{c}{d}$ if and only if, $a d=b c$.

Postulate 20-A

AA Similarity

Theorem 20-A
SSS Similarity

If two angles of one triangle are congruent to two angles of a second triangle, then the triangles are similar.

If the measure of the corresponding sides of two triangles is proportional, then the triangles are similar.

Theorem 20-B SAS Similarity

Theorem 20-C

Theorem 21-A

Theorem 21-B

Theorem 21-C
Triangle
Mid-segment Theorem

Corollary 21-A-1

Corollary 21-A-2

Theorem 21-D

Theorem 21-E

If the measures of two sides of a triangle are proportional to the measures of two corresponding sides of a second triangle, and the included angles are congruent, then the triangles are similar.

The similarity of triangles is reflexive, symmetric, and transitive.

If a line is parallel to one side of a triangle and intersects the other two sides, then those sides are separated into segments of proportional lengths.

A line that divides two sides of a triangle proportionally is parallel to the third side of the triangle.

If a segment's endpoints are the midpoints of two sides of a triangle, then it is parallel to the third side of the triangle and one-half its length.

If three or more parallel lines intersect two transversals, then they cut off the transversals proportionally.

If three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.

If two triangles are similar, then their perimeters are proportional to the measures of the corresponding sides.

If two triangles are similar, then the measures of the corresponding altitudes are proportional to the measures of the corresponding sides.

Theorem 21-F

Theorem 21-G

Theorem 21-H
Angle Bisector Theorem

Theorem 22-A

Theorem 22-B

Theorem 22-C

If two triangles are similar, then the measures of the corresponding medians are proportional to the measures of the corresponding sides.

If two triangles are similar, then the measures of the corresponding angle bisectors of the two triangles are proportional to the measures of the corresponding sides.

In a triangle an angle bisector separates the opposite side into segments that have the same ratio as the other two sides.

In a right triangle, if an altitude is drawn from the vertex of the right angle to the hypotenuse, then the two triangles formed are similar to each other and to the given triangle.

In a right triangle, the measures of the altitude drawn from the vertex of the right angle to its hypotenuse is the geometric mean between the measures of the two segments of the hypotenuse created by the intersection of the hypotenuse and the altitude.

In a right triangle with the altitude drawn to the hypotenuse, the measure of a leg is the geometric mean between the measure of the hypotenuse and the measure of the segment of the hypotenuse that is adjacent to the leg.

Theorem 22-D

Converse of the
Pythagorean Theorem

If the sum of the squares of the measures of the two legs of a right triangle equals the square of the hypotenuse, then the triangle is a right triangle.

Suppose that m and n are two positive integers with $m<n$, then $n^{2}-m^{2}, 2 m n$, and $n^{2}+m^{2}$ is a Pythagorean triple.

In a 45-45-90 degree right triangle, the length of the

Theorem 22-E

 hypotenuse can be determined by multiplying $\sqrt{2}$ times the leg.| $\operatorname{leg} a=\operatorname{leg} b$ | \rightarrow | x |
| :--- | :--- | :--- |
| hypotenuse | \rightarrow | $x \sqrt{2}$ |

Theorem 22-F
In a 30-60-90 degree right triangle, the length of the hypotenuse is twice as long as the shorter leg, and the longer leg equals the shorter leg multiplied by $\sqrt{3}$.

shorter leg	\rightarrow	x
longer leg	\rightarrow	$x \sqrt{3}$
hypotenuse	\rightarrow	$2 x$

Law of Sines

When given any triangle, ABC , with sides named a, b, and c representing the measures of the sides opposite the angles with measures A, B, and C, respectively; the following ratios exist:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

The Law of Sines can be used to solve a triangle when the following conditions are met:

Case I: Two angles and a side are given. (The third angle can be found using the Angle Sum Theorem.)

Case II: Two sides and an angle opposite one of these sides is given.

Law of Cosines

When given any triangle, ABC , with sides named a, b, and c representing the measures of the sides opposite the angles with measures A, B, and C, respectively; the following is true:

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

The Law of Cosines may be used in the following cases:
Case I: Two sides and the included angle are given.
Case II: All three sides are given

The circumference of a circle is equal to the diameter of the circle times "Pi" or two times the radius of the circle times "Pi".

$$
C=\pi d \quad \text { or } \quad C=2 \pi r
$$

The sum of the central angles in a circle is 360°.

Definition of Arc Measure

The measure of a minor arc is the same as the measure of its central angle.

The measure of a major arc is the 360° minus the measure of its central angle.

The measure of a semicircle is 180°.

Postulate 24- A

When an arc is formed by two adjacent arcs, the measure of the arc is the sum of the measures of the two adjacent arcs. are congruent, if and only if, their corresponding chords are congruent.

In a circle, if a diameter is perpendicular to a chord, then it bisects the chord and its arc.

Theorem 24-C
In a circle or in congruent circles, two chords are congruent, if and only if, they are equidistant from the center.

