Theorems and Postulates

Postulate 2-A Protractor Postulate Given \overline{AB} and a number r between 0 and 180, there is exactly one ray with endpoint A, extending on either side of \overline{AB} , such that the measure of the angle formed is r.

Definition of Right, Acute and Obtuse Angles $\angle A$ is a right angle if $m \angle A$ is 90. $\angle A$ is an acute angle if $m \angle A$ is less than 90. $\angle A$ is an obtuse angle if $m \angle A$ is greater than 90 and less than 180.

Postulate 2-B Angle Addition

If *R* is in the interior of $\angle PQS$, then $m \angle PQR + m \angle RQS = m \angle PQS$. If $m \angle PQR + m \angle RQS = m \angle PQS$, then *R* is in the interior of $\angle PQS$.

Vertical angles are congruent.

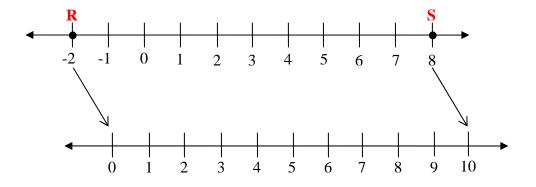
The sum of the measures of the angles in a linear pair is 180°.

The sum of the measures of complementary angles is 90°.

Postulate 3-A Ruler

Two points on a line can be paired with real numbers so that, given any two points R and S on the line, R corresponds to zero, and Scorresponds to a positive number.

Point **R** could be paired with 0, and **S** could be paired with 10.



Postulate 3-B Segment Addition If N is between M and P, then MN + NP = MP. Conversely, if MN + NP = MP, then N is between M and P.

Theorem 4-A Pythagorean Theorem	In a right triangle, the sum of the squares of the measures of the legs equals the square of the measure of the hypotenuse.
Distance Formula	The distance <i>d</i> between any two points with coordinates (x_1, y_1) and (x_2, y_2) is given by the formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.
Midpoint Definition	The midpoint, M , of \overline{AB} is the point between A and B such that AM = MB .
Midpoint Formula Number Line	With endpoints of A and B on a number line, the midpoint of \overline{AB} is $\frac{A+B}{2}$.
Midpoint Formula Coordinate Plane	In the coordinate plane, the coordinates of the midpoint of a segment whose endpoints have coordinates (x_1, y_1) and (x_2, y_2) are $(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$.
Theorem 4-B Midpoint Theorem	If M is the midpoint of \overline{PQ} , then $\overline{PM} \cong \overline{MQ}$.
Postulate 5-A Law of Detachment	If $p \Rightarrow q$ is true, and p is true, then q is true.
Postulate 5-B Law of Syllogism	If $p \Rightarrow q$ is true and $q \Rightarrow r$ is true, then $p \Rightarrow r$ is true.
Postulate 6-A Reflexive Property	Any segment or angle is congruent to itself. $\overline{QS} \cong \overline{QS}$

Postulate 6-B Symmetric Property	If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$. If $\angle CAB \cong \angle DOE$, then $\angle DOE \cong \angle CAB$.
Theorem 6-A Transitive Property	If any segments or angles are congruent to the same angle, then they are congruent to each other. If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$. If $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$.
Theorem 6-B Transitive Property	If any segments or angles are congruent to each other, then they are congruent to the same angle. (This statement is the converse of Theorem 6-A.)
Theorem 7-A Addition Property	If a segment is added to two congruent segments, then the sums are congruent.
Theorem 7-B Addition Property	If an angle is added to two congruent angles, then the sums are congruent.
Theorem 7-C Addition Property	If congruent segments are added to congruent segments, then the sums are congruent.
Theorem 7-D Addition Property	If congruent angles are added to congruent angles, then the sums are congruent.
Theorem 7-E Subtraction Property	If a segment is subtracted from congruent segments, then the differences are congruent.

Theorem 7-F Subtraction Property	If an angle is subtracted from congruent angles, then the differences are congruent.
Theorem 7-G Subtraction Property	If congruent segments are subtracted from congruent segments, then the differences are congruent.
Theorem 7-H Subtraction Property	If congruent angles are subtracted from congruent angles, then the differences are congruent.
Theorem 7-1 Multiplication Property	If segments are congruent, then their like multiples are congruent.
Theorem 7-J Multiplication Property	If angles are congruent, then their like multiples are congruent.
Theorem 7-K Division Property	If segments are congruent, then their like divisions are congruent.
Theorem 7-L Division Property	If angles are congruent, then their like divisions are congruent.
Theorem 10-A	Congruence of angles is reflexive, symmetric, and transitive.
Theorem 10-B	If two angles form a linear pair, then they are supplementary angles.

Theorem 10-C	Angles supplementary to the same angle are congruent.
Theorem 10-D	Angles supplementary to congruent angles are congruent.
Theorem 10-E	Angles complementary to the same angle are congruent.
Theorem 10-F	Angles complementary to congruent angles are congruent.
Theorem 10-G	Right angles are congruent.
Theorem 10-H	Vertical angles are congruent.
Theorem 10-I	Perpendicular lines intersect to form right angles.
Postulate 10-A	If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.
Theorem 10-J	If two parallel lines are cut by a transversal, then each of the pair of alternate interior angles is congruent.

Theorem 10-K	If two parallel lines are cut by a transversal, then each pair of alternate exterior angles is congruent.
	If two parallel lines are cut by a transversal,
Theorem 10-L	then each pair of consecutive interior angles is supplementary.
Theorem 10-M	If two parallel lines are cut by a transversal that is perpendicular to one of the parallel lines, then the transversal is perpendicular to the other parallel line.

The definition of slope states that, given two points (x_1, y_1) and (x_2, y_2) , the slope of a line containing the points can be determined using this formula:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 when $x_2 - x_1 \neq 0$

Postulate 11-A	Two non-vertical lines have the same slope if and only if they are parallel.
Postulate 11-B	Two non-vertical lines are perpendicular if and only if the product of their slopes is –1.
Postulate 11-C	If two lines in a plane are cut by a transversal and the corresponding angles are congruent, then the lines are parallel.
Postulate 11-D	If there is a line and a point that is not on the line, then there exists exactly one line that passes through the point that is parallel to the given line.
Theorem 11-A	If two lines in a plane are cut by a transversal and the alternate interior angles are congruent, then the lines are parallel.
Theorem 11-B	If two lines in a plane are cut by a transversal and the alternate exterior angles are congruent, then the lines are parallel.

Theorem 11-C	If two lines in a plane are cut by a transversal and the consecutive interior angles are supplementary, then the lines are parallel.
Theorem 11-D	If two lines in a plane are perpendicular to the same line, then the lines are parallel.

The distance from a point, which is not on a line, and a line is the length of a line segment that is perpendicular from the point to the line.

The distance between two parallel lines is the distance between one line and any point on the other line.

Theorem 12-A Angle Sum Theorem	The sum of the measures of the angles of a triangle is 180.
Theorem 12-B Third Angle Theorem	If two of the angles in one triangle are congruent to two of the angles in a second triangle, then the third angles of each triangle are congruent.
Theorem 12-C Exterior Angle Theorem	In a triangle, the measure of an exterior angle is equal to the sum of the measures of the two remote interior angles.
Corollary 12-A-1	The acute angles of a right triangle are complementary.
Corollary 12-A-2	There can be at most one right angle in triangle.
Corollary 12-A-3	There can be at most one obtuse angle in triangle.

The measure of each angle in an equiangular triangle is 60.

Definition of Congruent Triangles (CPCTC)

Two triangles are congruent if and only if their corresponding parts are congruent.

Postulate 12	-A	Any segment or angle is congruent to itself. (Reflexive Property)
Postulate 13-A SSS Postulate		If the sides of a triangle are congruent to the sides of a second triangle, then the triangles are congruent.
SSS		ee sides of one triangle must gruent to the three sides of the iangle.
Postulate 13-B SAS Postulate		If two sides and the included angle of a triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent.
SAS	one tria	des and the included angle of angle must be congruent to two ad the included angle of the iangle.
Postulate 13-C ASA Postulate		If two angles and the included side of a triangle are congruent to the two angles and included side of a second triangle, then the triangles are congruent.
ASA	one tria	gles and the included side of angle must be congruent to two and the included side of the

Theorem 13-A AAS Theorem	If two angles and a non-included side of a triangle are congruent to two angles and a non-included side of a second triangle, then the two triangles are congruent.	
AAS of th	o angles and a non-included side one triangle must be congruent to corresponding two angles and e of the other triangle.	
Theorem 13-E Isosceles Triang Theorem	If two sides of a triangle are congruent, then the angles that are opposite those sides are congruent.	
Theorem 13-0	If two angles of a triangle are congruent, then the sides that are opposite those angles are congruent.	
Corollary 13-B	A triangle is equilateral if and only if it is equiangular.	
Corollary 13-B	2 Each angle of an equilateral triangle measures 60°.	
Postulate 14-A HL Postulate	If there exists a correspondence between the vertices of two right triangles such that the hypotenuse and a leg of one triangle are congruent to the corresponding parts of the second triangle, then the two right triangles are congruent.	
The shortest distance between two points is a straight line.		
Postulate 14-B	A line segment is the shortest path between two points.	
Theorem 14-A	A point on a perpendicular bisector of a segment is equidistant from the endpoints of the segment.	

Theorem 14-B	A point that is equidistant from the endpoints of a segment lies on the perpendicular bisector of the segment.
Theorem 14-C	A point on the bisector of an angle is equidistant from the sides of the angle.
Theorem 14-D	A point that is in the interior of an angle and is equidistant from the sides of the angle lies on the bisector of the angle.
Comparison Property	a < b, a = b, or $a > b$.
Transitive Property	1. If $a < b$ and $b < c$, then $a < c$.2. If $a > b$ and $b > c$, then $a > c$.
Addition Property	1. If $a > b$, then $a + c > b + c$. 2. If $a < b$, then $a + c < b + c$.
Subtraction Property	1. If $a > b$, then $a - c > b - c$. 2. If $a < b$, then $a - c < b - c$.
Multiplication Properties	1. If $c > 0$ and $a < b$, then $ac < bc$. 2. If $c > 0$ and $a > b$, then $ac > bc$. 3. If $c < 0$ and $a < b$, then $ac > bc$. 4. If $c < 0$ and $a > b$, then $ac < bc$.
Division Properties	1. If $c > 0$ and $a < b$, then $\frac{a}{c} < \frac{b}{c}$. 2. If $c > 0$ and $a > b$, then $\frac{a}{c} > \frac{b}{c}$. 3. If $c < 0$ and $a < b$, then $\frac{a}{c} > \frac{b}{c}$. 4. If $c < 0$ and $a > b$, then $\frac{a}{c} < \frac{b}{c}$.

Theorem 15-A Exterior Angle Inequality Theorem

If an angle is an exterior angle of a triangle, then its measure is greater than the measure of either of its remote interior angles.

Theorem 15-B	If a side of a triangle is longer than another side, then the measure of the angle opposite the longer side is greater than the measure of the angle opposite the shorter side.
Theorem 15-C	In a triangle, if the measure of an angle is greater than the measure of a second angle, then the side that is opposite the larger angle is longer than the side opposite the smaller angle.
Theorem 15-D	The shortest segment from a point to a line is a perpendicular line segment between the point and the line.
Theorem 15-E Triangle Inequality Theorem	The sum of the lengths of any two sides of a triangle is greater than the length of the third side.
Theorem 15-F SAS Inequality (Hinge Theorem)	If two sides of a triangle are congruent to two sides of a second triangle, and if the included angle of the first triangle is greater than the included angle in the second triangle, then the third side of the first triangle is longer than the third side of the second triangle.
Theorem 15-G SSS Inequality	If two sides of a triangle are congruent to two sides of a second triangle, and if the third side in the first triangle is longer than the third side in the second triangle, then the included angle between the congruent sides in the first triangle is greater than the included angle between the congruent sides in the second triangle.
Theorem 16-A	The opposite sides of a parallelogram are congruent.
Theorem 16-B	The opposite angles of a parallelogram are congruent.
Theorem 16-C	The consecutive pairs of angles of a parallelogram are supplementary.

Theorem 16-D	The diagonals of a parallelogram bisect each other.
Theorem 16-E	Either diagonal of a parallelogram separates the parallelogram into two congruent triangles.
Theorem 16-F	In a quadrilateral if both pairs of opposite sides are congruent, then the quadrilateral is a parallelogram.
Theorem 16-G	In a quadrilateral if both pairs of opposite angles are congruent, then the quadrilateral is a parallelogram.
Theorem 16-H	In a quadrilateral if its diagonals bisect each other, then the quadrilateral is a parallelogram.
Theorem 16-I	In a quadrilateral if one pair of opposite sides is both congruent and parallel, then the quadrilateral is a parallelogram.
Theorem 16-J	If a parallelogram is a rectangle, then its diagonals are congruent.
Theorem 16-K	If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.
Theorem 19-A	The diagonals of a rhombus bisect its four angles.

Theorem 19-B	The diagonals of a rhombus are perpendicular.
Theorem 19-C	If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.
Theorem 19-D	In an isosceles trapezoid, both pairs of base angles are congruent.
Theorem 19-E	In an isosceles trapezoid, the diagonals are congruent.
Theorem 19-F Mid-Segment Theorem	The median of a trapezoid is parallel to the bases and its length is one-half the sum of the lengths of the bases.
Theorem 19-G	The diagonals of a kite are perpendicular.

Equality of Cross Products

For any real numbers, *a*, *b*, *c*, and *d*, where *b* and *d* are not equal to zero,

$$\frac{a}{b} = \frac{c}{d}$$
 if and only if, $ad = bc$.

Postulate 20-A AA Similarity	If two angles of one triangle are congruent to two angles of a second triangle, then the triangles are similar.
Theorem 20-A SSS Similarity	If the measure of the corresponding sides of two triangles is proportional, then the triangles are similar.

Theorem 20-B SAS Similarity	If the measures of two sides of a triangle are proportional to the measures of two corresponding sides of a second triangle, and the included angles are congruent, then the triangles are similar.
Theorem 20-C	The similarity of triangles is reflexive, symmetric, and transitive.
Theorem 21-A	If a line is parallel to one side of a triangle and intersects the other two sides, then those sides are separated into segments of proportional lengths.
Theorem 21-B	A line that divides two sides of a triangle proportionally is parallel to the third side of the triangle.
Theorem 21-C Triangle Mid-segment Theorem	If a segment's endpoints are the midpoints of two sides of a triangle, then it is parallel to the third side of the triangle and one-half its length.
Corollary 21-A-1	If three or more parallel lines intersect two transversals, then they cut off the transversals proportionally.
Corollary 21-A-2	If three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.
Theorem 21-D	If two triangles are similar, then their perimeters are proportional to the measures of the corresponding sides.
Theorem 21-E	If two triangles are similar, then the measures of the corresponding altitudes are proportional to the measures of the corresponding sides.

Theorem 21-F	If two triangles are similar, then the measures of the corresponding medians are proportional to the measures of the corresponding sides.	
Theorem 21-G	If two triangles are similar, then the measures of the corresponding angle bisectors of the two triangles are proportional to the measures of the corresponding sides.	
Theorem 21-H Angle Bisector Theorem	In a triangle an angle bisector separates the opposite side into segments that have the same ratio as the other two sides.	
Theorem 22-A	In a right triangle, if an altitude is drawn from the vertex of the right angle to the hypotenuse, then the two triangles formed are similar to each other and to the given triangle.	
Theorem 22-B	In a right triangle, the measures of the altitude drawn from the vertex of the right angle to its hypotenuse is the geometric mean between the measures of the two segments of the hypotenuse created by the intersection of the hypotenuse and the altitude.	
	the unitude.	
Theorem 22-C	In a right triangle with the altitude drawn to the hypotenuse, the measure of a leg is the geometric mean between the measure of the hypotenuse and the measure of the segment of the hypotenuse that is adjacent to the leg.	
Theorem 22-D Converse of the Pythagorean Theorem	If the sum of the squares of the measures of the two legs of a right triangle equals the square of the hypotenuse, then the triangle is a right triangle.	
Suppose that <i>m</i> and n are two positive integers with $m < n$,		

Suppose that *m* and n are two positive integers with m < n, then $n^2 - m^2$, 2mn, and $n^2 + m^2$ is a **Pythagorean triple**.

Theorem 22-E	In a 45-45-90 degree right triangle, the length of the hypotenuse can be determined by multiplying $\sqrt{2}$ times the leg.
$leg a = leg b \rightarrow$ hypotenuse \rightarrow	$\frac{x}{x\sqrt{2}}$
Theorem 22-F	In a 30-60-90 degree right triangle, the length of the hypotenuse is twice as long as the shorter leg, and the longer leg equals the shorter leg multiplied by $\sqrt{3}$.
shorter leg \rightarrow x longer leg \rightarrow $x\sqrt{x}$ hypotenuse \rightarrow 2x	3

Law of Sines

When given any triangle, ABC, with sides named *a*, *b*, and *c* representing the measures of the sides opposite the angles with measures A, B, and C, respectively; the following ratios exist:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

The Law of Sines can be used to solve a triangle when the following conditions are met:

Case I: Two angles and a side are given. (The third angle can be found using the Angle Sum Theorem.)

Case II: Two sides and an angle opposite one of these sides is given.

Law of Cosines

When given any triangle, ABC, with sides named *a*, *b*, and *c* representing the measures of the sides opposite the angles with measures A, B, and C, respectively; the following is true:

$$a2 = b2 + c2 - 2bc \cos A$$
$$b2 = a2 + c2 - 2ac \cos B$$
$$c2 = a2 + b2 - 2ab \cos C$$

The Law of Cosines may be used in the following cases:

Case I: Two sides and the included angle are given.

Case II: All three sides are given