Theorems and Postulates

Postulate 2-A Protractor Postulate Given \overline{AB} and a number r between 0 and 180, there is exactly one ray with endpoint A, extending on either side of \overline{AB} , such that the measure of the angle formed is r.

Definition of Right, Acute and Obtuse Angles $\angle A$ is a right angle if $m \angle A$ is 90. $\angle A$ is an acute angle if $m \angle A$ is less than 90. $\angle A$ is an obtuse angle if $m \angle A$ is greater than 90 and less than 180.

Postulate 2-B Angle Addition

If *R* is in the interior of $\angle PQS$, then $m \angle PQR + m \angle RQS = m \angle PQS$. If $m \angle PQR + m \angle RQS = m \angle PQS$, then *R* is in the interior of $\angle PQS$.

Vertical angles are congruent.

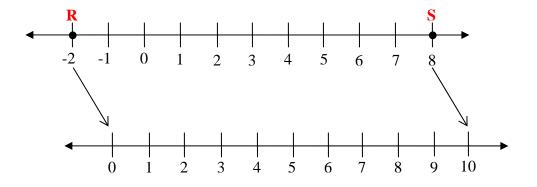
The sum of the measures of the angles in a linear pair is 180°.

The sum of the measures of complementary angles is 90°.

Postulate 3-A Ruler

Two points on a line can be paired with real numbers so that, given any two points R and S on the line, R corresponds to zero, and Scorresponds to a positive number.

Point **R** could be paired with 0, and **S** could be paired with 10.



Postulate 3-B Segment Addition If N is between M and P, then MN + NP = MP. Conversely, if MN + NP = MP, then N is between M and P.

Theorem 4-A Pythagorean Theorem	In a right triangle, the sum of the squares of the measures of the legs equals the square of the measure of the hypotenuse.
Distance Formula	The distance <i>d</i> between any two points with coordinates (x_1, y_1) and (x_2, y_2) is given by the formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.
Midpoint Definition	The midpoint, M , of \overline{AB} is the point between A and B such that AM = MB .
Midpoint Formula Number Line	With endpoints of A and B on a number line, the midpoint of \overline{AB} is $\frac{A+B}{2}$.
Midpoint Formula Coordinate Plane	In the coordinate plane, the coordinates of the midpoint of a segment whose endpoints have coordinates (x_1, y_1) and (x_2, y_2) are $(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$.
Theorem 4-B Midpoint Theorem	If M is the midpoint of \overline{PQ} , then $\overline{PM} \cong \overline{MQ}$.
Postulate 5-A Law of Detachment	If $p \Rightarrow q$ is true, and p is true, then q is true.
Postulate 5-B Law of Syllogism	If $p \Rightarrow q$ is true and $q \Rightarrow r$ is true, then $p \Rightarrow r$ is true.
Postulate 6-A Reflexive Property	Any segment or angle is congruent to itself. $\overline{QS} \cong \overline{QS}$

Postulate 6-B Symmetric Property	If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$. If $\angle CAB \cong \angle DOE$, then $\angle DOE \cong \angle CAB$.
Theorem 6-A Transitive Property Theorem 6-B	If any segments or angles are congruent to the same angle, then they are congruent to each other. If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$. If $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$. If any segments or angles are congruent to each
Transitive Property Theorem 7-A Addition Property	other, then they are congruent to the same angle. (This statement is the converse of Theorem 6-A.) If a segment is added to two congruent segments, then the sums are congruent.
Theorem 7-B Addition Property	If an angle is added to two congruent angles, then the sums are congruent.
Theorem 7-C Addition Property	If congruent segments are added to congruent segments, then the sums are congruent.
Theorem 7-D Addition Property	If congruent angles are added to congruent angles, then the sums are congruent.
Theorem 7-E Subtraction Property	If a segment is subtracted from congruent segments, then the differences are congruent.

Theorem 7-F Subtraction Property	If an angle is subtracted from congruent angles, then the differences are congruent.
Theorem 7-G Subtraction Property	If congruent segments are subtracted from congruent segments, then the differences are congruent.
Theorem 7-H Subtraction Property	If congruent angles are subtracted from congruent angles, then the differences are congruent.
Theorem 7-1 Multiplication Property	If segments are congruent, then their like multiples are congruent.
Theorem 7-J Multiplication Property	If angles are congruent, then their like multiples are congruent.
Theorem 7-K Division Property	If segments are congruent, then their like divisions are congruent.
Theorem 7-L Division Property	If angles are congruent, then their like divisions are congruent.
Theorem 10-A	Congruence of angles is reflexive, symmetric, and transitive.
Theorem 10-B	If two angles form a linear pair, then they are supplementary angles.

Theorem 10-C	Angles supplementary to the same angle are congruent.
Theorem 10-D	Angles supplementary to congruent angles are congruent.
Theorem 10-E	Angles complementary to the same angle are congruent.
Theorem 10-F	Angles complementary to congruent angles are congruent.
Theorem 10-G	Right angles are congruent.
Theorem 10-H	Vertical angles are congruent.
Theorem 10-I	Perpendicular lines intersect to form right angles.
Postulate 10-A	If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.
Theorem 10-J	If two parallel lines are cut by a transversal, then each of the pair of alternate interior angles is congruent.

Theorem 10-K	If two parallel lines are cut by a transversal, then each pair of alternate exterior angles is congruent.
	If two parallel lines are cut by a transversal,
Theorem 10-L	then each pair of consecutive interior angles is supplementary.
Theorem 10-M	If two parallel lines are cut by a transversal that is perpendicular to one of the parallel lines, then the transversal is perpendicular to the other parallel line.

The definition of slope states that, given two points (x_1, y_1) and (x_2, y_2) , the slope of a line containing the points can be determined using this formula:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 when $x_2 - x_1 \neq 0$

Postulate 11-A	Two non-vertical lines have the same slope if and only if they are parallel.
Postulate 11-B	Two non-vertical lines are perpendicular if and only if the product of their slopes is –1.
Postulate 11-C	If two lines in a plane are cut by a transversal and the corresponding angles are congruent, then the lines are parallel.
Postulate 11-D	If there is a line and a point that is not on the line, then there exists exactly one line that passes through the point that is parallel to the given line.
Theorem 11-A	If two lines in a plane are cut by a transversal and the alternate interior angles are congruent, then the lines are parallel.
Theorem 11-B	If two lines in a plane are cut by a transversal and the alternate exterior angles are congruent, then the lines are parallel.

Theorem 11-C	If two lines in a plane are cut by a transversal and the consecutive interior angles are supplementary, then the lines are parallel.
Theorem 11-D	If two lines in a plane are perpendicular to the same line, then the lines are parallel.

The distance from a point, which is not on a line, and a line is the length of a line segment that is perpendicular from the point to the line.

The distance between two parallel lines is the distance between one line and any point on the other line.

Theorem 12-A Angle Sum Theorem	The sum of the measures of the angles of a triangle is 180.
Theorem 12-B Third Angle Theorem	If two of the angles in one triangle are congruent to two of the angles in a second triangle, then the third angles of each triangle are congruent.
Theorem 12-C Exterior Angle Theorem	In a triangle, the measure of an exterior angle is equal to the sum of the measures of the two remote interior angles.
Corollary 12-A-1	The acute angles of a right triangle are complementary.
Corollary 12-A-2	There can be at most one right angle in triangle.
Corollary 12-A-3	There can be at most one obtuse angle in triangle.

The measure of each angle in an equiangular triangle is 60.

Definition of Congruent Triangles (CPCTC)

Two triangles are congruent if and only if their corresponding parts are congruent.

Postulate 13-A
SSS PostulateIf the sides of a triangle are congruent to the
sides of a second triangle, then the triangles
are congruent.

SSS The three sides of one trian be congruent to the three so other triangle.
--

Postulate 13-B SAS Postulate	If two sides and the included angle of a triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent.

	Two sides and the included angle of
SAS	one triangle must be congruent to two
•••••	sides and the included angle of the
	other triangle.

Postulate 13-C ASA Postulate If two angles and the included side of a triangle are congruent to the two angles and included side of a second triangle, then the triangles are congruent.

Theorem 13-A AAS Theorem		If two angles and a non-included side of a triangle are congruent to two angles and a non-included side of a second triangle, then the two triangles are congruent.
AAS	Two angles and a non-included side of one triangle must be congruent to the corresponding two angles and side of the other triangle.	
Theorem 13-B Isosceles Triangle Theorem		If two sides of a triangle are congruent, then the angles that are opposite those sides are congruent.
Theorem 13-C		If two angles of a triangle are congruent, then the sides that are opposite those angles are congruent.
Corollary 13-B-1		A triangle is equilateral if and only if it is equiangular.
Corollary 13-B-2		Each angle of an equilateral triangle measures 60°.