Theorems and Postulates

Postulate 2-A
Protractor Postulate

Definition of Right, Acute and Obtuse Angles

Given $\overrightarrow{A B}$ and a number r between 0 and 180, there is exactly one ray with endpoint A, extending on either side of $\overrightarrow{A B}$, such that the measure of the angle formed is r.

Postulate 2-B
Angle Addition
$\angle A$ is a right angle if $m \angle A$ is $\mathbf{9 0}$.
$\angle A$ is an acute angle if $m \angle A$ is less than 90 .
$\angle A$ is an obtuse angle if $m \angle A$ is greater than 90 and less than 180.

Vertical angles are congruent.

The sum of the measures of the angles in a linear pair is 180°.

The sum of the measures of complementary angles is 90°.

If R is in the interior of $\angle P Q S$, then $m \angle P Q R+m \angle R Q S=m \angle P Q S$.
If $m \angle P Q R+m \angle R Q S=m \angle P Q S$, then R is in the interior of $\angle P Q S$.

Postulate 3-A Ruler

Two points on a line can be paired with real numbers so that, given any two points R and S on the line, R corresponds to zero, and S corresponds to a positive number.

Point R could be paired with 0 , and S could be paired with 10 .

Postulate 3-B
Segment Addition

If N is between M and P , then $\mathrm{MN}+\mathrm{NP}=\mathrm{MP}$.
Conversely, if $\mathrm{MN}+\mathrm{NP}=\mathrm{MP}$, then N is between M and P .

Theorem 4-A
Pythagorean Theorem

Distance Formula

Midpoint Formula

 Number Line
Midpoint Formula

 Coordinate PlaneTheorem 4-B Midpoint Theorem

Postulate 5-A
Law of
Detachment

Postulate 5-B
Law of Syllogism

Postulate 6-A

Reflexive
Property

In a right triangle, the sum of the squares of the measures of the legs equals the square of the measure of the hypotenuse.

The distance d between any two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

The midpoint, M, of $\overline{A B}$ is the point between A and B such that $\mathbf{A M}=\mathbf{M B}$.

With endpoints of A and B on a number line, the midpoint of $\overline{A B}$ is $\frac{A+B}{2}$.

In the coordinate plane, the coordinates of the midpoint of a segment whose endpoints have coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

If M is the midpoint of $\overline{\mathrm{PQ}}$, then $\overline{\mathrm{PM}} \cong \overline{\mathrm{MQ}}$.

If $p \Rightarrow q$ is true, and p is true, then q is true.

If $p \Rightarrow q$ is true and $q \Rightarrow r$ is true, then $p \Rightarrow r$ is true.

Any segment or angle is congruent to itself.

$$
\overline{Q S} \cong \overline{Q S}
$$

Postulate 6-B Symmetric Property

Theorem 6-A Transitive Property

Theorem 6-B
Transitive Property

Theorem 7-A Addition Property

Theorem 7-B
Addition Property

Theorem 7-C
Addition
Property

Theorem 7-D
Addition
Property

Theorem 7-E
Subtraction Property

If $\overline{A B} \cong \overline{C D}$, then $\overline{C D} \cong \overline{A B}$.
If $\angle C A B \cong \angle D O E$, then $\angle D O E \cong \angle C A B$.

If any segments or angles are congruent to the same angle, then they are congruent to each other.

If $\overline{A B} \cong \overline{C D}$ and $\overline{C D} \cong \overline{E F}$, then $\overline{A B} \cong \overline{E F}$. If $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$.

If any segments or angles are congruent to each other, then they are congruent to the same angle. (This statement is the converse of Theorem 6-A.)

If a segment is added to two congruent segments, then the sums are congruent.

If an angle is added to two congruent angles, then the sums are congruent.

If congruent segments are added to congruent segments, then the sums are congruent.

If congruent angles are added to congruent angles, then the sums are congruent.

If a segment is subtracted from congruent segments, then the differences are congruent.

Theorem 7-F
Subtraction Property

Theorem 7-G
Subtraction Property

Theorem 7-H Subtraction Property

Theorem 7-I Multiplication Property

Theorem 7-J

 Multiplication PropertyTheorem 7-K Division Property

Theorem 7-L Division Property

If an angle is subtracted from congruent angles, then the differences are congruent.

If congruent segments are subtracted from congruent segments, then the differences are congruent.

If congruent angles are subtracted from congruent angles, then the differences are congruent.

If segments are congruent, then their like multiples are congruent.

If angles are congruent, then their like multiples are congruent.

If segments are congruent, then their like divisions are congruent.

If angles are congruent, then their like divisions are congruent.

