Theorems and Postulates

Postulate 2-A Protractor Postulate

Given \overrightarrow{AB} and a number r between 0 and 180, there is exactly one ray with endpoint A, extending on either side of \overrightarrow{AB} , such that the measure of the angle formed is r.

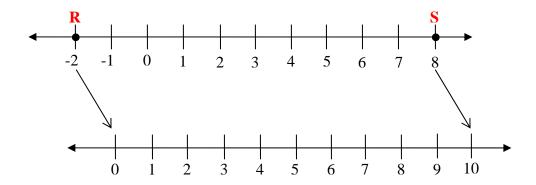
Definition of Right, Acute and Obtuse Angles

 $\angle A$ is a right angle if $m \angle A$ is 90. $\angle A$ is an acute angle if $m \angle A$ is less than 90. $\angle A$ is an obtuse angle if $m \angle A$ is greater than 90 and less than 180.

Postulate 2-B Angle Addition

If *R* is in the interior of $\angle PQS$, then $m\angle PQR + m\angle RQS = m\angle PQS$. If $m\angle PQR + m\angle RQS = m\angle PQS$, then *R* is in the interior of $\angle PQS$.

Vertical angles are congruent.


The sum of the measures of the angles in a linear pair is 180°.

The sum of the measures of complementary angles is 90°.

Postulate 3-A Ruler

Two points on a line can be paired with real numbers so that, given any two points **R** and **S** on the line, **R** corresponds to zero, and **S** corresponds to a positive number.

Point R could be paired with 0, and S could be paired with 10.

Postulate 3-B Segment Addition

If N is between M and P, then MN + NP = MP. Conversely, if MN + NP = MP, then N is between M and P. Theorem 4-A Pythagorean Theorem

In a right triangle, the sum of the squares of the measures of the legs equals the square of the measure of the hypotenuse.

Distance Formula

The distance d between any two points with coordinates (x_1, y_1) and (x_2, y_2) is given by the formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

Midpoint Definition

The midpoint, M, of AB is the point between A and B such that AM = MB.

Midpoint Formula Number Line With endpoints of A and B on a number line, the midpoint of \overline{AB} is $\frac{A+B}{2}$.

Midpoint Formula Coordinate Plane In the coordinate plane, the coordinates of the midpoint of a segment whose endpoints have coordinates (x_1, y_1) and (x_2, y_2) are $(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$.

Theorem 4-B Midpoint Theorem

If M is the midpoint of \overline{PQ} , then $\overline{PM} \cong \overline{MQ}$.

Postulate 5-A Law of Detachment

If $p \Rightarrow q$ is true, and p is true, then q is true.

Postulate 5-B Law of Syllogism

If $p \Rightarrow q$ is true and $q \Rightarrow r$ is true, then $p \Rightarrow r$ is true.

Postulate 6-A Reflexive Property

Any segment or angle is congruent to itself.

$$\overline{QS} \cong \overline{QS}$$

Postulate 6-B Symmetric Property

If
$$\overline{AB} \cong \overline{CD}$$
, then $\overline{CD} \cong \overline{AB}$.
If $\angle CAB \cong \angle DOE$, then $\angle DOE \cong \angle CAB$.

Theorem 6-A Transitive Property

If any segments or angles are congruent to the same angle, then they are congruent to each other.

If
$$\overline{AB} \cong \overline{CD}$$
 and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$.
If $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$.

Theorem 6-B Transitive Property

If any segments or angles are congruent to each other, then they are congruent to the same angle. (This statement is the converse of Theorem 6-A.)