## ANGLES

In this unit, you will examine angles and learn how connect various angle relationships. You will also learn how to make geometric constructions.

## Angles

Measuring Angles
Angle Constructions
Angle Relationships

## Angles

Ray - A ray is a half line.


The name of this ray is $\overrightarrow{W X}$ or Ray WX. Since the ray starts at point $\mathrm{W}, \mathrm{W}$ must be the first letter of its name.

Vertex - A vertex is the point where two rays meet.
Angle - An angle is formed when two rays meet at a common point. The measure of an angle is the amount of circular rotation about a point starting with a ray and ending with a second ray.


Angle 1, also denoted as $\angle 1$, may be named $\angle M R S$ (Angle MRS). Point R is the vertex, $\overrightarrow{R S}$ and $\overrightarrow{R M}$ are the rays.

* When using three letters to name an angle, be sure to make the vertex letter the center letter of the name.

Opposite Rays - Opposite rays are two half lines that are formed at a point on a line.


The opposite rays in this diagram are $\overrightarrow{J D}$ and $\overrightarrow{J N}$.

Interior - The interior of an angle is the area within the two rays.
Exterior - The exterior of an angle is the area outside the two rays.


Exterior

Example 1: Refer to the diagram to answer the questions.

a) Name a vertex.

Point U is the vertex.
b) Name a ray.

There are three rays. They are $\overrightarrow{U T}, \overrightarrow{U P}, \overrightarrow{U Z}$.
c) Name three angles.

They are $\angle T U P, \angle P U Z, T U Z$.
d) Name a point that lies in the interior of $\angle T U Z$.

Point D or Point P
e) Name a point that lies in the exterior of $\angle T U Z$.

## Point C

Example 2: Refer to the diagram to answer the questions.

a) What are other names for $\angle 1$ ?
$\angle H F G$ and $\angle G F H$ (The vertex letter may be used to name an angle but should not be used when it can also be used to name other angles, so $\angle F$ would not be a good choice.)
b) What is the name of the vertex for $\angle F H G$ ?

## Point H

c) What is the name of the vertex for $\angle 2$ ?

## Point G

d) Name two different rays on $\overleftrightarrow{F G}$.
$\overrightarrow{F G}$ starting at Point F extending downward and $\overrightarrow{G F}$ starting at Point G and extending upward.

## Measuring Angles

Postulate - A postulate is a mathematical statement that is accepted as true. It is based on the fundamentals of mathematical belief.

Measurement of an angle - Angles are measured in degrees.
Degree - A degree is a unit of rotation around a point that may be used to measure angles. One degree is $\frac{1}{360}$ th of a rotation around a point.


Protractor - A protractor is a measurement tool used to measure angles in degrees.


## Postulate 2-A Protractor Postulate

Given $\overrightarrow{A B}$ and a number $r$ between 0 and 180 , there is exactly one ray with endpoint $A$, extending on either side of $\overrightarrow{A B}$, such that the measure of the angle formed is $r$.


The starting ray, in this case, the bottom ray, is at $0^{\circ}$. Read the other ray. The ray is passing through both 40 and 140. You must decide which number makes sense. Think about a right angle -it measures $90^{\circ}$. This angle is not as open as a right angle; thus, you would read the smaller number. This angle measures $40^{\circ}$. Notice the numbers near the bottom ray, the lower set of numbers start at 0 , then 10,20 , etc. That is the set of numbers that is used to read this angle. The starting ray starts at $0^{\circ}$. This is an acute angle because it measures more than $0^{\circ}$ and less than $90^{\circ}$.


The starting ray, in this case, the bottom ray, is at $0^{\circ}$. Read the other ray. The ray is passing through both 45 and 135. You must decide which number makes sense. Think about a right angle - it measures $90^{\circ}$. This angle is open wider than a right angle; thus, you would read the larger number. This angle measures $135^{\circ}$. Notice the numbers near the bottom ray, the upper set of numbers start at 0 , then 10,20 , etc. That is the set of numbers that is used to read this angle. The starting ray starts at $0^{\circ}$. This is an obtuse angle because it measure more than $90^{\circ}$ and less than $180^{\circ}$.

## Angles are Degrees of Rotation

The measure of an angle is the amount of circular rotation about a point starting with a ray and ending with a second ray. All of these angles measure $45^{\circ}$.


## Definition of Right, Acute and Obtuse Angles

$\angle A$ is a right angle if $m \angle A$ is $\mathbf{9 0}$.
$\angle A$ is an acute angle if $m \angle A$ is less than 90 .
$\angle A$ is an obtuse angle if $m \angle A$ is greater than $\mathbf{9 0}$ and less than 180.

## Angle Constructions

Compass - A compass is a measurement tool used to draw arcs and circles.
Arc - An arc is a portion of a circle.
Congruent figures - geometric figures that have the same size and shape.
We will now look at using a compass to make some geometric constructions.
Example 1: Construct $\angle T N R$ to be equal in measure to $\angle B$.

Draw $\angle B$.


Draw $\overrightarrow{N T}$


Place the metal point of the compass at vertex $B$ and draw an arc passing through both rays of $\angle B$.


Move to $\overrightarrow{N T}$ and without changing the setting on the compass, place the metal point of the compass on point N and draw the same arc across the ray.


Place the metal point of the compass at point D and the pencil point at point C , where the arc crosses $\overrightarrow{B D}$. You will have to adjust the settings of the compass to do this.


Make sure the compass has not changed settings.
On $\overrightarrow{N T}$ place the metal point of the compass at the point of intersection for the ray and the arc. Use the pencil point to make a small arc that crosses the larger arc.


Draw $\overrightarrow{N R}$ starting at point N and passing through Point R , the point of intersection between the two arcs.


Angle RNT is the same size as angle CBD.
This can be represented as follows:
$m \angle R N T=m \angle C B D$

We can also say that angle RNT is congruent to angle CBD.
The symbol for congruence is $\cong$. Thus,
$\angle R N T \cong \angle C B D$

Example 2: Find a ray that divides the angle R into two congruent parts by constructing an angle bisector.

Draw $\angle R$.


Place the metal point of the compass at point $R$ and draw an arc through the angle rays, naming the points of intersection, S and T .


Adjust the compass settings a little wider and place the metal point of the compass at point S . Draw an arc in the interior of the angle.

Keep the compass setting the same and place the metal point of the compass at point $T$. Draw a second arc in the interior of the angle letting it cross the other arc.


Draw $\overrightarrow{R U}$ so that it starts at the vertex R and extends though the intersection of the two arcs, point U.

$\overrightarrow{R U}$ is the bisector of $\angle S R T$, thus $m \angle S R U=m \angle U R T$ and $\angle S R U \cong \angle U R T$.

## Angle Relationships

Right Angle - A right angle measures $90^{\circ}$.
Straight Angle - A straight angle measures $180^{\circ}$.
Supplementary angles - Supplementary angles are angles that total $180^{\circ}$.
Complementary angles - Complementary angles form a right angle.
Linear pair - A linear pair is a pair of adjacent angles whose sum forms a straight angle.
Vertical angles - Vertical angles are the opposite congruent angles formed when two lines intersect.

Postulate 2-B Angle Addition

If $R$ is in the interior of $\angle P Q S$, then $m \angle P Q R+m \angle R Q S=m \angle P Q S$. If $m \angle P Q R+m \angle R Q S=m \angle P Q S$, then $R$ is in the interior of $\angle P Q S$.

Example 1: Use the diagram to answer the questions.

a) $m \angle C O D+m \angle D O B=$ ?

By the Angle Addition Postulate, the sum of the two angles equals $m \angle C O B$.
b) If $m \angle C O D$ equals $50^{\circ}$ and $m \angle C O B$ equals $85^{\circ}$, what is $m \angle D O B$ ?

$$
\begin{gathered}
m \angle C O D+m \angle D O B=m \angle C O B \\
50^{\circ}+x=85^{\circ} \\
x=35^{\circ}
\end{gathered}
$$

## Vertical angles are congruent.

Example 2: Find $m \angle B A E$.
Since $\angle B A E$ and $\angle C A D$ are vertical angles, they are congruent and their measures are equal.


$$
\begin{aligned}
12 x+30 & =3 x+120 \\
9 x & =90 \\
x & =10 \\
m \angle B A E & =12 x+30 \\
m \angle B A E & =12(10)+30 \\
m \angle B A E & =150^{\circ}
\end{aligned}
$$

## The sum of the measures of the angles in a linear pair is $\mathbf{1 8 0}^{\circ}$.

Example 3: Find the measure of $\angle W X Y$ and $\angle Z X Y$.
Since $\angle W X Y$ and $\angle Z X Y$ are a linear pair, the sum of their measures is 180 degrees.


$$
\begin{gathered}
m \angle W X Y+m \angle Z X Y=180 \\
3 x+2 x=180 \\
5 x=180 \\
x=36 \\
m \angle W X Y=3 x \quad m \angle Z X Y=2 x \\
m \angle W X Y=3(36) \quad m \angle Z X Y=2(36) \\
m \angle W X Y=108^{\circ} \quad m \angle Z X Y=72^{\circ}
\end{gathered}
$$

Check: Linear pairs total $180^{\circ} . \quad 72^{\circ}+108^{\circ}=180^{\circ}$

## The sum of the measures of complementary angles is $90^{\circ}$.

Example 4: A pair of angles is complementary. One of the angles is 4 times larger than the other angle. How large are each of the angles?

Draw a picture.


Let $x$ represent the smaller angle. $x$
Let $4 x$ represent the larger angle. $4 x$
Complementary angles total 90 first angle + second angle $=90$
Write an equation and solve.

$$
\begin{array}{r}
x+4 x=90 \\
5 x=90 \\
x=18
\end{array}
$$

The first angle $(x)$ is $18^{\circ}$; the second angle ( $4 x$ ) equals $4(18)$ which is $72^{\circ}$.
Check: Complementary angles total $90^{\circ} .18^{\circ}+72^{\circ}=90^{\circ}$

