Theorems and Postulates

Postulate 1-A Protractor Postulate Given \overline{AB} and a number r between 0 and 180, there is exactly one ray with endpoint A, extending on either side of \overline{AB} , such that the measure of the angle formed is r.

Definition of Right, Acute and Obtuse Angles $\angle A$ is a right angle if $m \angle A$ is 90. $\angle A$ is an acute angle if $m \angle A$ is less than 90. $\angle A$ is an obtuse angle if $m \angle A$ is greater than 90 and less than 180.

Postulate 1-B Angle Addition

If *R* is in the interior of $\angle PQS$, then $m \angle PQR + m \angle RQS = m \angle PQS$. If $m \angle PQR + m \angle RQS = m \angle PQS$, then *R* is in the interior of $\angle PQS$.

Vertical angles are congruent.

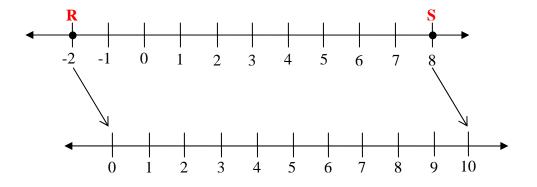
The sum of the measures of the angles in a linear pair is 180°.

The sum of the measures of complementary angles is 90°.

Postulate 2-A Ruler

Two points on a line can be paired with real numbers so that, given any two points R and S on the line, R corresponds to zero, and Scorresponds to a positive number.

Point **R** could be paired with 0, and **S** could be paired with 10.



Postulate 2-B Segment Addition If N is between M and P, then MN + NP = MP. Conversely, if MN + NP = MP, then N is between M and P.

Theorem 2-A Pythagorean Theorem	In a right triangle, the sum of the squares of the measures of the legs equals the square of the measure of the hypotenuse.
Distance Formula	The distance <i>d</i> between any two points with coordinates (x_1, y_1) and (x_2, y_2) is given by the formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.
Midpoint Definition	The midpoint, M , of \overline{AB} is the point between A and B such that AM = MB .
Midpoint Formula Number Line	With endpoints of A and B on a number line, the midpoint of \overline{AB} is $\frac{A+B}{2}$.
Midpoint Formula Coordinate Plane	In the coordinate plane, the coordinates of the midpoint of a segment whose endpoints have coordinates (x_1, y_1) and (x_2, y_2) are $(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$.
Theorem 2-B Midpoint Theorem	If M is the midpoint of \overline{PQ} , then $\overline{PM} \cong \overline{MQ}$.
Postulate 3-A Law of Detachment	If $p \Rightarrow q$ is true, and p is true, then q is true.
Postulate 3-B Law of Syllogism	If $p \Rightarrow q$ is true and $q \Rightarrow r$ is true, then $p \Rightarrow r$ is true.
Postulate 4-A Reflexive Property	Any segment or angle is congruent to itself. $\overline{QS} \cong \overline{QS}$
Postulate 4-B Symmetric Property	If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$. If $\angle CAB \cong \angle DOE$, then $\angle DOE \cong \angle CAB$.

Theorem 4-A Transitive Property	If any segments or angles are congruent to the same angle, then they are congruent to each other. If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$. If $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$.
Theorem 4-B Transitive Property	If any segments or angles are congruent to each other, then they are congruent to the same angle. (This statement is the converse of Theorem 4-A.)
Theorem 5-A Addition Property	If a segment is added to two congruent segments, then the sums are congruent.
Theorem 5-B Addition Property	If an angle is added to two congruent angles, then the sums are congruent.
Theorem 5-C Addition Property	If congruent segments are added to congruent segments, then the sums are congruent.
Theorem 5-D Addition Property	If congruent angles are added to congruent angles, then the sums are congruent.
Theorem 5-E Subtraction Property	If a segment is subtracted from congruent segments, then the differences are congruent.
Theorem 5-F Subtraction Property	If an angle is subtracted from congruent angles, then the differences are congruent.
Theorem 5-G Subtraction Property	If congruent segments are subtracted from congruent segments, then the differences are congruent.

Theorem 5-H Subtraction Property	If congruent angles are subtracted from congruent angles, then the differences are congruent.
Theorem 5-1 Multiplication Property	If segments are congruent, then their like multiples are congruent.
Theorem 5-J Multiplication Property	If angles are congruent, then their like multiples are congruent.
Theorem 5-K Division Property	If segments are congruent, then their like divisions are congruent.
Theorem 5-L Division Property	If angles are congruent, then their like divisions are congruent.
Theorem 7-A	Congruence of angles is reflexive, symmetric, and transitive.
Theorem 7-B	If two angles form a linear pair, then they are supplementary angles.
Theorem 7-C	Angles supplementary to the same angle are congruent.
Theorem 7-D	Angles supplementary to congruent angles are congruent.

Theorem 7-E	Angles complementary to the same angle are congruent.
Theorem 7-F	Angles complementary to congruent angles are congruent.
Theorem 7-G	Right angles are congruent.
Theorem 7-H	Vertical angles are congruent.
Theorem 7-I	Perpendicular lines intersect to form right angles.
Postulate 7-A	If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.
Theorem 7-J	If two parallel lines are cut by a transversal, then each of the pair of alternate interior angles is congruent.
Theorem 7-K	If two parallel lines are cut by a transversal, then each pair of alternate exterior angles is congruent.
Theorem 7-L	If two parallel lines are cut by a transversal, then each pair of consecutive interior angles is supplementary.

Theorem 7-M

If two parallel lines are cut by a transversal that is perpendicular to one of the parallel lines, then the transversal is perpendicular to the other parallel line.

The definition of slope states that, given two points (x_1, y_1) and (x_2, y_2) , the slope of a line containing the points can be determined using this formula:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 when $x_2 - x_1 \neq 0$

Postulate 8-A	Two non-vertical lines have the same slope if and only if they are parallel.
Postulate 8-B	Two non-vertical lines are perpendicular if and only if the product of their slopes is –1.
Postulate 8-C	If two lines in a plane are cut by a transversal and the corresponding angles are congruent, then the lines are parallel.
Postulate 8-D	If there is a line and a point that is not on the line, then there exists exactly one line that passes through the point that is parallel to the given line.
Theorem 8-A	If two lines in a plane are cut by a transversal and the alternate interior angles are congruent, then the lines are parallel.
Theorem 8-B	If two lines in a plane are cut by a transversal and the alternate exterior angles are congruent, then the lines are parallel.
Theorem 8-C	If two lines in a plane are cut by a transversal and the consecutive interior angles are supplementary, then the lines are parallel.
Theorem 8-D	If two lines in a plane are perpendicular to the same line, then the lines are parallel.

The distance from a point, which is not on a line, and a line is the length of a line segment that is perpendicular from the point to the line.

The distance between two parallel lines is the distance between one line and any point on the other line.

Theorem 10-A Angle Sum Theorem	The sum of the measures of the angles of a triangle is 180.	
Theorem 10-B Third Angle Theorem	If two of the angles in one triangle are congruent to two of the angles in a second triangle, then the third angles of each triangle are congruent.	
Theorem 10-C Exterior Angle Theorem	In a triangle, the measure of an exterior angle is equal to the sum of the measures of the two remote interior angles.	
Corollary 10-A-1	The acute angles of a right triangle are complementary.	
Corollary 10-A-2	There can be at most one right angle in triangle.	
Corollary 10-A-3	There can be at most one obtuse angle in triangle.	
Corollary 10-A-4	The measure of each angle in an equiangular triangle is 60.	
Definition of Congruent Triangles (CPCTC)		
Two triangles are congrue	ent if and only if their corresponding parts are congruent.	
Postulate 10-A	Any segment or angle is congruent to itself. (Reflexive Property)	

Postulate 11 SSS Postula		If the sides of a triangle are congruent to the sides of a second triangle, then the triangles are congruent.
SSS		be sides of one triangle must ruent to the three sides of the angle.
Postulate 11 SAS Postula		If two sides and the included angle of a triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent.
SAS	one trian	es and the included angle of ngle must be congruent to two d the included angle of the angle.
Postulate 11 ASA Postula	-	If two angles and the included side of a triangle are congruent to the two angles and included side of a second triangle, then the triangles are congruent.
ASA	one trian	gles and the included side of ngle must be congruent to two nd the included side of the angle.
Theorem 11 AAS Theore		If two angles and a non-included side of a triangle are congruent to two angles and a non-included side of a second triangle, then the two triangles are congruent.
AAS	of one tr the corre	gles and a non-included side riangle must be congruent to esponding two angles and he other triangle.
Theorem 1 Isosceles Tria Theorem	angle	If two sides of a triangle are congruent, ther the angles that are opposite those sides are congruent.

Theorem 11-C	If two angles of a triangle are congruent, then the sides that are opposite those angles are congruent.
Corollary 11-B-1	A triangle is equilateral if and only if it is equiangular.
Corollary 11-B-2	Each angle of an equilateral triangle measures 60°.
Postulate 12-A HL Postulate	If there exists a correspondence between the vertices of two right triangles such that the hypotenuse and a leg of one triangle are congruent to the corresponding parts of the second triangle, then the two right triangles
	are congruent.
The shortest distance between two points is a straight line.	

Postulate 12-B	A line segment is the shortest path between two points.
Theorem 12-A	A point on a perpendicular bisector of a segment is equidistant from the endpoints of the segment.
Theorem 12-B	A point that is equidistant from the endpoints of a segment lies on the perpendicular bisector of the segment.
Theorem 12-C	A point on the bisector of an angle is equidistant from the sides of the angle.
Theorem 12-D	A point that is in the interior of an angle and is equidistant from the sides of the angle lies on the bisector of the angle.
Comparison Property	a < b, a = b, or $a > b$.
Transitive Property	1. If $a < b$ and $b < c$, then $a < c$.2. If $a > b$ and $b > c$, then $a > c$.
Addition Property	1. If $a > b$, then $a + c > b + c$. 2. If $a < b$, then $a + c < b + c$.
Subtraction Property	1. If $a > b$, then $a - c > b - c$. 2. If $a < b$, then $a - c < b - c$.

Multiplication Properties	1. If $c > 0$ and $a < b$, then $ac < bc$. 2. If $c > 0$ and $a > b$, then $ac > bc$. 3. If $c < 0$ and $a < b$, then $ac > bc$. 4. If $c < 0$ and $a > b$, then $ac < bc$.
Division Properties	1. If $c > 0$ and $a < b$, then $\frac{a}{c} < \frac{b}{c}$. 2. If $c > 0$ and $a > b$, then $\frac{a}{c} > \frac{b}{c}$. 3. If $c < 0$ and $a < b$, then $\frac{a}{c} > \frac{b}{c}$. 4. If $c < 0$ and $a > b$, then $\frac{a}{c} < \frac{b}{c}$.
Theorem 13-A Exterior Angle Inequality Theorem	If an angle is an exterior angle of a triangle, then its measure is greater than the measure of either of its remote interior angles.
Theorem 13-B	If a side of a triangle is longer than another side, then the measure of the angle opposite the longer side is greater than the measure of the angle opposite the shorter side.
Theorem 13-C	In a triangle, if the measure of an angle is greater than the measure of a second angle, then the side that is opposite the larger angle is longer than the side opposite the smaller angle.
Theorem 13-D	The shortest segment from a point to a line is a perpendicular line segment between the point and the line.
Theorem 13-E Triangle Inequality Theorem	The sum of the lengths of any two sides of a triangle is greater than the length of the third side.
Theorem 13-F SAS Inequality (Hinge Theorem)	If two sides of a triangle are congruent to two sides of a second triangle, and if the included angle of the first triangle is greater than the included angle in the second triangle, then the third side of the first triangle is longer than the third side of the second triangle.

Theorem 13-G SSS Inequality	If two sides of a triangle are congruent to two sides of a second triangle, and if the third side in the first triangle is longer than the third side in the second triangle, then the included angle between the congruent sides in the first triangle is greater than the included angle between the congruent sides in the second triangle.
Theorem 14-A	The opposite sides of a parallelogram are congruent.
Theorem 14-B	The opposite angles of a parallelogram are congruent.
Theorem 14-C	The consecutive pairs of angles of a parallelogram are supplementary.
Theorem 14-D	The diagonals of a parallelogram bisect each other.
Theorem 14-E	Either diagonal of a parallelogram separates the parallelogram into two congruent triangles.
Theorem 14-F	In a quadrilateral if both pairs of opposite sides are congruent, then the quadrilateral is a parallelogram.
Theorem 14-G	In a quadrilateral if both pairs of opposite angles are congruent, then the quadrilateral is a parallelogram.
Theorem 14-H	In a quadrilateral if its diagonals bisect each other, then the quadrilateral is a parallelogram.

Theorem 14-I	In a quadrilateral if one pair of opposite sides is both congruent and parallel, then the quadrilateral is a parallelogram.
Theorem 14-J	If a parallelogram is a rectangle, then its diagonals are congruent.
Theorem 14-K	If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.
Theorem 15-A	The diagonals of a rhombus bisect its four angles.
Theorem 15-B	The diagonals of a rhombus are perpendicular.
Theorem 15-C	If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.
Theorem 15-D	In an isosceles trapezoid, both pairs of base angles are congruent.
Theorem 15-E	In an isosceles trapezoid, the diagonals are congruent.
Theorem 15-F Mid-Segment Theorem	The median of a trapezoid is parallel to the bases and its length is one-half the sum of the lengths of the bases.

The diagonals of a kite are perpendicular.

Equality of Cross Products

For any real numbers, *a*, *b*, *c*, and *d*, where *b* and *d* are not equal to zero,

$$\frac{a}{b} = \frac{c}{d}$$
 if and only if, $ad = bc$.

Postulate AA Simila		If two angles of one triangle are congruent to two angles of a second triangle, then the triangles are similar.
Theorem SSS Simil		If the measure of the corresponding sides of two triangles is proportional, then the triangles are similar.
Theorem SAS Simil		If the measures of two sides of a triangle are proportional to the measures of two corresponding sides of a second triangle, and the included angles are congruent, then the triangles are similar.
Theorem	16-C	The similarity of triangles is reflexive, symmetric, and transitive.
Theorem	19-A	If a line is parallel to one side of a triangle and intersects the other two sides, then those sides are separated into segments of proportional lengths.
Theorem	19-В	A line that divides two sides of a triangle proportionally is parallel to the third side of the triangle.
Theorem Triang Mid-segn Theore	le nent	If a segment's endpoints are the midpoints of two sides of a triangle, then it is parallel to the third side of the triangle and one-half its length.

Corollary 19-A-1	If three or more parallel lines intersect two transversals, then they cut off the transversals proportionally.
Corollary 19-A-2	If three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.
Theorem 19-D	If two triangles are similar, then their perimeters are proportional to the measures of the corresponding sides.
Theorem 19-E	If two triangles are similar, then the measures of the corresponding altitudes are proportional to the measures of the corresponding sides.
Theorem 19-F	If two triangles are similar, then the measures of the corresponding medians are proportional to the measures of the corresponding sides.
Theorem 19-G	If two triangles are similar, then the measures of the corresponding angle bisectors of the two triangles are proportional to the measures of the corresponding sides.
Theorem 19-H Angle Bisector Theorem	In a triangle an angle bisector separates the opposite side into segments that have the same ratio as the other two sides.
Theorem 20-A	In a right triangle, if an altitude is drawn from the vertex of the right angle to the hypotenuse, then the two triangles formed are similar to each other and to the given triangle.

Theorem 20-B	In a right triangle, the measures of the altitude drawn from the vertex of the right angle to its hypotenuse is the geometric mean between the measures of the two segments of the hypotenuse created by the intersection of the hypotenuse and the altitude.
Theorem 20-C	In a right triangle with the altitude drawn to the hypotenuse, the measure of a leg is the geometric mean between the measure of the hypotenuse and the measure of the segment of the hypotenuse that is adjacent to the leg.
Theorem 20-D Converse of the Pythagorean Theorem	If the sum of the squares of the measures of the two legs of a right triangle equals the square of the hypotenuse, then the triangle is a right triangle.
	we positive integers with $m < n$, $a^2 + m^2$ is a Pythagorean triple .
Theorem 20-E	In a 45-45-90 degree right triangle, the length of the hypotenuse can be determined by multiplying $\sqrt{2}$ times the leg.
$leg a = leg b \longrightarrow$ hypotenuse \rightarrow	$\frac{x}{x\sqrt{2}}$
Theorem 20-F	In a 30-60-90 degree right triangle, the length of the hypotenuse is twice as long as the shorter leg, and the
	longer leg equals the shorter leg multiplied by $\sqrt{3}$.

Law of Sines

When given any triangle, ABC, with sides named *a*, *b*, and *c* representing the measures of the sides opposite the angles with measures A, B, and C, respectively; the following ratios exist:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

The Law of Sines can be used to solve a triangle when the following conditions are met:

Case I: Two angles and a side are given. (The third angle can be found using the Angle Sum Theorem.)

Case II: Two sides and an angle opposite one of these sides is given.

Law of Cosines

When given any triangle, ABC, with sides named *a*, *b*, and *c* representing the measures of the sides opposite the angles with measures A, B, and C, respectively; the following is true:

$$a2 = b2 + c2 - 2bc \cos A$$
$$b2 = a2 + c2 - 2ac \cos B$$
$$c2 = a2 + b2 - 2ab \cos C$$

The Law of Cosines may be used in the following cases:

Case I: Two sides and the included angle are given.

Case II: All three sides are given

In a circle, a diameter is twice as long as the radius, and conversely, a radius is half the length of a diameter.

$$d = 2r \qquad \qquad r = \frac{1}{2}d$$

The circumference of a circle is equal to the diameter of the circle times "Pi" or two times the radius of the circle times "Pi".

 $C = \pi d$ or $C = 2\pi r$

The sum of the central angles in a circle is 360°.

Definition of Arc Measure

The measure of a minor arc is the same as the measure of its central angle.

The measure of a major arc is the 360° minus the measure of its central angle.

The measure of a semicircle is 180°.

Postulate 22–A	When an arc is formed by two adjacent arcs, the measure of the arc is the sum of the measures of the two adjacent arcs.
Theorem 22-A	In a circle or in congruent circles, two minor arcs are congruent, if and only if, their corresponding chords are congruent.
Theorem 22-B	In a circle, if a diameter is perpendicular to a chord, then it bisects the chord and its arc.
Theorem 22-C	In a circle or in congruent circles, two chords are congruent, if and only if, they are equidistant from the center.
Theorem 23-A	If an angle is inscribed in a circle, then the measure of the angle is one-half the measure of the intercepted arc.

Theorem 23-B	If two inscribed angles intercept the same arc, then the angles are congruent.
Theorem 23-C	An angle that is inscribed in a circle is a right angle if and only if its intercepted arc is a semicircle.
Theorem 23-D	If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.
Theorem 23-E	If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.
Theorem 23-F (Converse of 23-E)	If a radius is perpendicular to a line at the point at which the line intersects the circle, then the line is a tangent.
Theorem 23-G	If two segments from the same exterior point are tangent to a circle, then the two segments are congruent.
Theorem 23-H	If a secant and a tangent intersect at the point of tangency, then the measure of each angle formed is one-half the measure of its intercepted arc.
Theorem 23-I	If two secants intersect in the interior of a circle, then the measure of an angle formed is one-half the sum of the measures of the arcs intercepted by the angle and its vertical angle.
Theorem 23-J	The measure of an angle formed by two secants, a secant and a tangent, or two tangents intersecting in the exterior of a circle is equal to one-half the positive difference of the measures of the intercepted arcs.

Theorem 24-A	If two chords intersect in a circle, then the products of the measures of the segments are equal.	9
Theorem 24-B	If two secant segments of a circle are drawn exterior point, then the product of the measu secant segment and its external secant segme the product of the measures of the other seca and its external segment.	res of one ent is equal to
Theorem 24-C	If a tangent segment and a secant segment and circle from an exterior point, then the square measure of the tangent segment is equal to the the measures of the secant segment and its ex- segment.	e of the he product of
Theorem 25-A	In a convex polygon with n sides, the sum of interior angles equals $180(n - 2)$ degrees.	its
Theorem 25-B	In a convex polygon, the sum of the exterior angles is 360 degrees.	
The area of a rectang	le is the product of its base and height.	
A = bh		
The area of a square is the square of the length of one side. $A = s^{2}$		
The area of a parallelog	ram is the product of its base and height. A = bh	
The area of a triangle is t	he product of one-half its base(b) and height(h).	

$$A=\frac{1}{2}bh$$

The **area of a trapezoid** is the product of one-half its height(h) times the sum of its bases(b_1 and b_2).

$$A = \frac{1}{2}h(b_1 + b_2)$$

The **area of a rhombus** may be expressed as half the product of its diagonals.

$$A = \frac{1}{2}d_1d_2$$

Area of a Regular Polygon

For a regular polygon with an area of A square units, a perimeter of P units, and an apothem of a units, the area equals 1/2 the perimeter times the apothem.

$$A = \frac{1}{2} P a$$

Area of a Circle

The area of a circle (A) with a radius of r units equals "pi" times the square of the radius.

 $A = \pi r^2$

Postulate 26-A Length Probability Postulate	If a point on segment AB is chosen point C is between points A and B that the point is on segment AC is	, then the probability

Postulate 26-B		
Area Probability		
Postulate		

If a point is chosen at random from region A, the probability that the point is in region B, a region within the interior of region A, is $\frac{\text{Area of region B}}{\text{Area of region A}}$

Area of a Sector of a Circle

The area of a sector of a circle (A) is determined by the central angle (n) and radius (r) of the circle such that the area equals n divided by 360 times the area of the circle.

$$A = \frac{n}{360}\pi r^2$$

Network Traceability Test

A network is traceable, if and only if, **ONE** of the following is true.

1. Every node in the network has an even degree.

OR

2. Exactly two nodes in the network have an odd degree.

Starting Points for Network Traceability

1. If a node has an odd degree, then the tracing must start or end on that node.

2. If a network has nodes where all have even degrees, then the tracing can start on any node and will end on the starting point.

Lateral Area of a Right Prism

The lateral area L of a right prism is the product of the perimeter P of its base and the height h of the prism.

$$L = Ph$$

Surface Area of a Right Prism

The surface area T of a right prism is the sum of twice the base area B and its lateral area (Ph).

$$T = 2B + Ph$$

Lateral Area of a Right Cylinder

The lateral area *L* of a right cylinder is the product of the circumference $(2\pi r)$ of its base and the height *h* of the cylinder.

 $L = 2\pi rh$

Surface Area of a Right Cylinder

The surface area T of a right cylinder is the sum of twice the area of its circular base and the product of the circumference $(2\pi r)$ of its base and the height h of the cylinder.

$$T = 2\pi r^2 + 2\pi rh$$

Lateral Area of a Regular Pyramid

The lateral area L of a regular pyramid is the product of the perimeter P of its base and (1/2) its slant height l.

$$L = \frac{1}{2} P l$$

Surface Area of a Regular Pyramid

The surface area T of a regular pyramid is the sum of the area of its base B and the product of the perimeter P of its base and (1/2) its slant height l.

$$T = B + \frac{1}{2}Pl$$

Lateral Area of a Cone

The lateral area of a cone is the product of the slant height of a cone and "pi" times the radius.

 $L = \pi r l$

Surface Area of a Cone

The surface area T of a cone is the sum of the area of its base and its lateral area.

$$T = \pi r^2 + \pi r l$$

Surface Area of a Sphere

The surface area of a sphere is four times the area of its great circle.

$$T = 4\pi r^2$$

Volume of a Right Prism

The volume (V) of a right prism is the product of the area of the base (B) and the height (h) of the prism.

V = Bh

Volume of a Right Cylinder

The volume (V) of a right cylinder is the product of the area of its base (πr^2) and the height (h) of the cylinder.

$$V = \pi r^2 h$$

Volume of a Right Cone

The volume (V) of a right cone is one-third of the product of the area of its base (πr^2) and the height (h) of the cone.

$$V = \frac{1}{3}\pi r^2 h$$

Volume of a Right Pyramid

The volume (V) of a right pyramid is one-third of the product of the area of its base (B) and the height (h) of the pyramid.

$$V = \frac{1}{3}Bk$$

Cavalieri's Principle

If two solids have the same height and same cross-sectional areas at every level, then they have the same volume.

Volume of Oblique Solids:

Prisms:
$$V = Bh$$
 Cylinders: $V = \pi r^2 h$

Pyramids:
$$V = \frac{1}{3}Bh$$
 Cones: $V = \frac{1}{3}\pi r^2 h$

h = height of the solid (not slanted edges)

Volume of a Sphere

The volume (V) of a sphere is four-thirds of the product of "pi" and the radius-cubed.

$$V = \frac{4}{3}\pi r^3$$

Theorem 29

If two solids are similar with a scale factor of a : b, then the surface areas have a ratio of $a^2 : b^2$ and the volumes have a ratio of $a^3 : b^3$.

Standard Form of a Linear Equation

The standard form of a linear equation, where *A*, *B*, and *C* are real numbers and A and B are not both equal to zero, is

Ax + By = C

Slope of a Line

The slope of a line can be calculated by finding the change in y divided by the change in x.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

*Note: When $x_2 - x_1 = 0$, the line is a vertical line and the slope is "undefined".

Theorem 30

If an equation of a line is written in the form, y = mx + b, then *m* is the slope of the line and *b* is the y-intercept.

Slope-Intercept Form

Point-Slope Form

$$y - y_1 = m(x - x_1)$$

Where x_1 and y_1 represent a point on the line and *m* represents the slope.

Horizontal and Vertical lines

The equation of a horizontal line is y = b, where *b* is the y-intercept.

The equation of a vertical line is x = a, where *a* is the x-intercept.

Notation in the Coordinate Plane

In general, if (a, b) describes the translation horizontally "a" units and vertically "b" units, then the image of (x, y) is (x + a, y + b).

You can describe a translation of each point (x, y) of a figure using coordinate notation.

Translation: $(x, y) \rightarrow (x+a, y+b)$

a = how many units a point moves horizontally

b = how many units a point moves vertically

If a > 0, the point moves to the right.

If a < 0, the point moves to the left.

If b > 0, the point moves up.

If b < 0, the point moves down.

Postulate 31

In a given rotation, if A is the pre-image, B is the image, and Q is the center of rotation, then the measure of the angle of rotation, $\angle AQB$, is twice the measure of the angle formed by the intersecting lines of reflection.

A dilation produces an image similar to the original figure.

Multiplying by	a scale factor > 1	

Enlarges a figure

Multiplying by a scale factor < 1

Reduces a figure

Theorem 31

If a dilation with center C and a scale factor of K maps A onto E and B onto D, then ED = k (AB).

In general, if k is the scale factor for a dilation with center C, then the following is true:

If k > 0, then P', the image of point P, lies on \overrightarrow{CP} , and $\overrightarrow{CP} = k \cdot \overrightarrow{CP}$.

If k < 0, then P', the image of point P, lies on the ray opposite \overrightarrow{CP} , and $CP' = |k| \cdot CP$.

If |k| > 1, then the dilation is an enlargement.

If 0 < |k| < 1, then the dilation is a reduction.

If |k|=1, then the dilation is a congruence transformation.

To find a locus, complete the following steps:

- 1) Draw any given figures.
- 2) Locate several or all points that satisfy the given condition.
- 3) Draw a smooth geometric figure.
- 4) Describe the locus.

Test Rule for Shading Regions of an Inequality

If x and y is replaced with (0, 0) in the original inequality and the result is a **true** statement, the shade the region **that contains** the point (0, 0). If the result is a **false** statement, the shade the region that **does not** contain the point (0, 0).

Calculating Absolute Error

(1) When finding the absolute error of a **sum** or **product**, work with the largest measurements,(i.e. the plus (+) errors.)

(2) When finding the absolute error of a **difference** or **quotient**, work with the smallest measurements (i.e. the minus (–) errors.)