Theorems and Postulates

Postulate 1-A Protractor Postulate Given \overline{AB} and a number r between 0 and 180, there is exactly one ray with endpoint A, extending on either side of \overline{AB} , such that the measure of the angle formed is r.

Definition of Right, Acute and Obtuse Angles $\angle A$ is a right angle if $m \angle A$ is 90. $\angle A$ is an acute angle if $m \angle A$ is less than 90. $\angle A$ is an obtuse angle if $m \angle A$ is greater than 90 and less than 180.

Postulate 1-B Angle Addition

If *R* is in the interior of $\angle PQS$, then $m \angle PQR + m \angle RQS = m \angle PQS$. If $m \angle PQR + m \angle RQS = m \angle PQS$, then *R* is in the interior of $\angle PQS$.

Vertical angles are congruent.

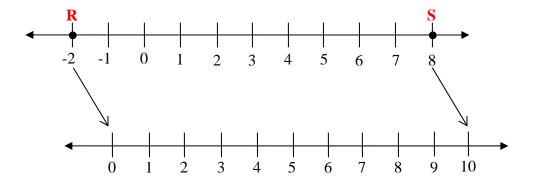
The sum of the measures of the angles in a linear pair is 180°.

The sum of the measures of complementary angles is 90°.

Postulate 2-A Ruler

Two points on a line can be paired with real numbers so that, given any two points R and S on the line, R corresponds to zero, and Scorresponds to a positive number.

Point **R** could be paired with 0, and **S** could be paired with 10.



Postulate 2-B Segment Addition If N is between M and P, then MN + NP = MP. Conversely, if MN + NP = MP, then N is between M and P.

Theorem 2-A Pythagorean Theorem	In a right triangle, the sum of the squares of the measures of the legs equals the square of the measure of the hypotenuse.
Distance Formula	The distance <i>d</i> between any two points with coordinates (x_1, y_1) and (x_2, y_2) is given by the formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.
Midpoint Definition	The midpoint, M , of \overline{AB} is the point between A and B such that AM = MB .
Midpoint Formula Number Line	With endpoints of A and B on a number line, the midpoint of \overline{AB} is $\frac{A+B}{2}$.
Midpoint Formula Coordinate Plane	In the coordinate plane, the coordinates of the midpoint of a segment whose endpoints have coordinates (x_1, y_1) and (x_2, y_2) are $(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$.
Theorem 2-B Midpoint Theorem	If M is the midpoint of \overline{PO} then $\overline{PM} \simeq \overline{MO}$
Postulate 3-A Law of Detachment	If $p \Rightarrow q$ is true, and p is true, then q is true.
Postulate 3-B Law of Syllogism	If $p \Rightarrow q$ is true and $q \Rightarrow r$ is true, then $p \Rightarrow r$ is true.
Postulate 4-A Reflexive Property	Any segment or angle is congruent to itself. $\overline{QS} \cong \overline{QS}$
Postulate 4-B Symmetric Property	If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$. If $\angle CAB \cong \angle DOE$, then $\angle DOE \cong \angle CAB$.

Theorem 4-A Transitive Property	If any segments or angles are congruent to the same angle, then they are congruent to each other. If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$. If $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$.
Theorem 4-B Transitive Property	If any segments or angles are congruent to each other, then they are congruent to the same angle. (This statement is the converse of Theorem 4-A.)
Theorem 5-A Addition Property	If a segment is added to two congruent segments, then the sums are congruent.
Theorem 5-B Addition Property	If an angle is added to two congruent angles, then the sums are congruent.
Theorem 5-C Addition Property	If congruent segments are added to congruent segments, then the sums are congruent.
Theorem 5-D Addition Property	If congruent angles are added to congruent angles, then the sums are congruent.
Theorem 5-E Subtraction Property	If a segment is subtracted from congruent segments, then the differences are congruent.
Theorem 5-F Subtraction Property	If an angle is subtracted from congruent angles, then the differences are congruent.
Theorem 5-G Subtraction Property	If congruent segments are subtracted from congruent segments, then the differences are congruent.

Theorem 5-H Subtraction Property	If congruent angles are subtracted from congruent angles, then the differences are congruent.
Theorem 5-1 Multiplication Property	If segments are congruent, then their like multiples are congruent.
Theorem 5-J Multiplication Property	If angles are congruent, then their like multiples are congruent.
Theorem 5-K Division Property	If segments are congruent, then their like divisions are congruent.
Theorem 5-L Division Property	If angles are congruent, then their like divisions are congruent.
Theorem 7-A	Congruence of angles is reflexive, symmetric, and transitive.
Theorem 7-B	If two angles form a linear pair, then they are supplementary angles.
Theorem 7-C	Angles supplementary to the same angle are congruent.
Theorem 7-D	Angles supplementary to congruent angles are congruent.

Theorem 7-E	Angles complementary to the same angle are congruent.
Theorem 7-F	Angles complementary to congruent angles are congruent.
Theorem 7-G	Right angles are congruent.
Theorem 7-H	Vertical angles are congruent.
Theorem 7-I	Perpendicular lines intersect to form right angles.
Postulate 7-A	If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.
Theorem 7-J	If two parallel lines are cut by a transversal, then each of the pair of alternate interior angles is congruent.
Theorem 7-K	If two parallel lines are cut by a transversal, then each pair of alternate exterior angles is congruent.
Theorem 7-L	If two parallel lines are cut by a transversal, then each pair of consecutive interior angles is supplementary.

Theorem 7-M

If two parallel lines are cut by a transversal that is perpendicular to one of the parallel lines, then the transversal is perpendicular to the other parallel line.

The definition of slope states that, given two points (x_1, y_1) and (x_2, y_2) , the slope of a line containing the points can be determined using this formula:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 when $x_2 - x_1 \neq 0$

Postulate 8-A	Two non-vertical lines have the same slope if and only if they are parallel.
Postulate 8-B	Two non-vertical lines are perpendicular if and only if the product of their slopes is –1.
Postulate 8-C	If two lines in a plane are cut by a transversal and the corresponding angles are congruent, then the lines are parallel.
Postulate 8-D	If there is a line and a point that is not on the line, then there exists exactly one line that passes through the point that is parallel to the given line.
Theorem 8-A	If two lines in a plane are cut by a transversal and the alternate interior angles are congruent, then the lines are parallel.
Theorem 8-B	If two lines in a plane are cut by a transversal and the alternate exterior angles are congruent, then the lines are parallel.
Theorem 8-C	If two lines in a plane are cut by a transversal and the consecutive interior angles are supplementary, then the lines are parallel.
Theorem 8-D	If two lines in a plane are perpendicular to the same line, then the lines are parallel.

The distance from a point, which is not on a line, and a line is the length of a line segment that is perpendicular from the point to the line.

The distance between two parallel lines is the distance between one line and any point on the other line.