Multiplying Decimals and Exploring Patterns

To multiply money, we use decimal multiplication. An example would be to multiply $\$ 3.25$ times 6 to get $\$ 19.50$. We’ll take a look at other decimals and how to multiply them.

To place the decimal point when multiplying decimals, count the decimal places in each factor and total them. The total is the number of decimal places that will be in the product. We will examine more multiplication problems.

Number patterns are everywhere. When counting by 5's, we are stating a number pattern: 5, 10, 15, 20, 25, ... We'll look at more interesting patterns with numbers. Calculators can speed up the exploration of number patterns. We'll see how a calculator can be a tool to aid in exploring patterns.

Using variables we can express a description of a pattern mathematically. We will explore using variables to describe patterns.

Note: Remember that the answer to a multiplication problem is called the product.

Multiply Decimals
More Decimal Multiplication

Patterns

Exploring Patterns with a Calculator
Patterns and Variables

Multiply Decimals

Multiplying Decimals Less Than One

To place the decimal point when multiplying decimals, count the decimal places in each factor and total them. The total is the number of decimal places that will be in the product (answer to a multiplication problem).

Multiply 0.7×0.9

Estimate: $1 \times 1=1$

Why two places?
Write both as fractions and multiply.
$\frac{7}{10} \times \frac{9}{10}=\frac{63}{100}=0.63$
Answer: 63 hundredths

Check: The estimate, 1 , is close to 0.63 .

Use 0 as a placeholder before the
numerals to give 4 decimal places.

Answer: 432 ten thousandths
Check: The estimate, 0 , is close to 0.0432 .

More Decimal Multiplication

To place the decimal point when multiplying decimals, count the decimal places in each factor and total them. The total is the number of decimal places that will be in the product (answer to a multiplication problem).

Multiply 5.23×7.9

Estimate: $5 \times 8=40$

Answer: 41 and 317 thousandths
Check: The estimate, 40, is close to 41.317.

Why three places?
Write both as mixed fractions and multiply. $5 \frac{23}{100} \times 7 \frac{9}{10}=$ $\frac{523}{100} \times \frac{79}{10}=\frac{41317}{1000}=$ $41 \frac{317}{1000}=41.317$

Multiply $46 \times 2.8 \quad$ Estimate: $50 \times 3=150$

zero decimal places one decimal place$\longrightarrow$$\mathbf{4 6}$ $\times \mathbf{2 . 8}$ $\mathbf{3 6 8}$	Why one decimal place?
total - one decimal place \longrightarrowWrite both as mixed fractions and multiply.	
$\frac{\mathbf{9 2}}{128.8} \times 2 \frac{8}{10}=$ $\frac{46}{1} \times \frac{28}{10}=\frac{1288}{10}=128.8$	
Answer: $\mathbf{1 2 8}$ and $\mathbf{8}$ tenths	

Check: The estimate, 150, is close to 128.8 .

Patterns

Study the number of smiley faces that make up the pattern.

2

3

4

How many smiley faces will make up the next step? Draw a table to show the relationship between the step of the sequence and the number of smiley faces.

Step	Number of Faces
1	1
2	2
3	4
4	8
5	

Step 5

Step	Number of Faces
1	1
2	2
3	4
4	8
5	$\mathbf{1 6}$

Exploring Patterns with a Calculator

Look at the table below. It may help you find the missing numbers.

\mathbf{N}	$\mathbf{N} \times \mathbf{7}$
4	28
5	
6	42
7	49
8	

The rule is to multiply \mathbf{N} by 7.
The missing numbers are:

$$
\begin{aligned}
& 5 \times 7=35 \\
& 8 \times 7=56
\end{aligned}
$$

Patterns and Variables

The $5^{\text {th }}$ Grade Class is raising money for a field trip. They are selling spaghetti dinner tickets for $\$ 4.50$. The table below shows the cost for up through 5 tickets.

Tickets (T)	1	2	3	4	5
Cost (C)	4.50	9.00	13.50	18.00	22.50

Megan sold 8 tickets.
Write a rule for the pattern in the ticket sales. Use \mathbf{T} for a variable that represents the number of tickets. Use \mathbf{C} to represent the cost of the tickets.
$C=T \times 4.50$

Tickets (T)	1	2	3	4	5
Cost $(\mathrm{C}=\mathrm{T} \times 4.50)$	4.50	9.00	13.50	18.00	22.50

Use the rule to find the amount of money Megan owes for the tickets.

$$
\begin{aligned}
& C=T \times \$ 4.50 \\
& C=8 \times \$ 4.50 \\
& C=\$ 36.00
\end{aligned}
$$

