SOLVING TWO-STEP EQUATIONS

In this unit, you will extend your knowledge of equations. You will solve two-step equations using algebra and inverse properties. You will solve equations that include whole numbers and integers.

Using Inverses to Solve Equations

Using Inverses to Solve Equations

Addition and subtraction are inverses. Multiplication and division are inverses. This idea is valuable for solving algebraic equations.

If we have an equation 15m = 45, then we can use the inverse operation, division, to solve it.

We "operate" on both sides by using division, and then simplify to find a solution.

15m = 45	15 times $m = 45$
$\frac{15m}{15} = \frac{45}{15}$	Divide both sides by 15. (Divide is the inverse of multiply.)
$\frac{15}{15}(m) = \frac{45}{15}$	$\frac{15m}{15}$ is the same as $\frac{15}{15}(m)$.
1 m = 3	Simplify both sides.
m = 3	1 m is the same as m .

The solution is m = 3.

Example 1: Solve 5n + 15 = 30 using inverse operations.

5n+15=30	Given
5n+15-15=30-15	Use the same inverse operation (subtraction) on both sides of the equation.
5 <i>n</i> =15	Simplify
$\frac{5n}{5} = \frac{15}{5}$	Use the same inverse operation (division) on both sides of the equation.
<i>n</i> =3	Simplify

The solution is n = 3.

Example 2: Solve 5z - 12 = -2 using inverse operations.

5z - 12 = -2	Given
5z - 12 + 12 = -2 + 12	Use the same inverse operation (addition) on both sides of the equation.
5z = 10	Simplify
$\frac{5z}{5} = \frac{10}{5}$	Use the same inverse operation (division) on both sides of the equation.
z = 2	Simplify

The solution is z = 2.

Example 3: Solve 4n + 3 = -5 using inverse operations.

4n + 3 = -5	Given
4n+3-3=-5-3	Use the same inverse operation (subtraction) on both sides of the equation.
4n = -8	Simplify
$\frac{4n}{4} = \frac{-8}{4}$	Use the same inverse operation (division) on both sides of the equation.
n = -2	Simplify

The solution is n = -2.

Example 4:	Write an equation for the following, and then	
solve: "Tw	enty-three is five more than three times a number"	•

Twenty-th	nree is	five more	than three	times a numb	ber.
23	=	5	+	3 <i>x</i>	
23 = 5 + 3	x				
23 - 5 = 5	+3x-5	5	Subtrac equat	et 5 from both ion (inverse o	sides of the f addition).
23 -5 =5	-5+3x	c	Use the the righ switchi	e commutative it side of the e ng $3x$ and -5	e property on equation by 5 around.
18 = 3x			Simplif	ý	
6 = x (or	x = 6)				

The solution is x = 6.

Example 5: Write an equation for the following, and then solve: For the tournament game, Andrew bought an adult ticket for \$7.50 and 5 student tickets. If the total cost of the tickets were \$30, what was the price of a student ticket?

Think algebraically.

Let t = the price of a student ticket.

5 <i>t</i>	price of 5 student tickets
5t + 7.50	price of the adult ticket added to the price of student tickets (total cost)
30	Total cost is given.
5t + 7.50 = 30	total cost = total cost
Now solve.	
5t + 7.50 = 30	
5t + 7.50 - 7.50 = 30 - 7.50	Use the inverse operation of addition and subtract 7.50 from both sides of the equation.
5t = 22.50	Simplify.
t = 4.50	Divide.

Each student ticket costs \$4.50.