SOLVI NG TWO-STEP EQUATI ONS

In this unit, you will extend your knowledge of equations. You will solve two-step equations using algebra and inverse properties. You will solve equations that include whole numbers and integers.

Using Inverses to Solve Equations

Using Inverses to Solve Equations

Addition and subtraction are inverses. Multiplication and division are inverses. This idea is valuable for solving algebraic equations.

If we have an equation $15 m=45$, then we can use the inverse operation, division, to solve it.

We "operate" on both sides by using division, and then simplify to find a solution.

$$
\begin{array}{ll}
15 m=45 & 15 \text { times } m=45 \\
\frac{15 m}{15}=\frac{45}{15} & \begin{array}{l}
\text { Divide both sides by } 15 . \text { (Divide is the inverse } \\
\text { of multiply.) }
\end{array} \\
\frac{15}{15}(m)=\frac{45}{15} & \frac{15 m}{15} \text { is the same as } \frac{15}{15}(m) . \\
1 m=3 & \begin{array}{l}
\text { Simplify both sides. } \\
m=3
\end{array} \\
1 m \text { is the same as } m .
\end{array}
$$

The solution is $m=3$.

Example 1: Solve $5 n+15=30$ using inverse operations.

$$
\begin{aligned}
& 5 n+15=30 \\
& 5 n+15-15=30-15
\end{aligned}
$$

$$
5 n=15
$$

$$
\frac{5 n}{5}=\frac{15}{5}
$$

$$
n=3
$$

Given
Use the same inverse operation (subtraction) on both sides of the equation.

Simplify
Use the same inverse operation (division) on both sides of the equation.

Simplify

The solution is $n=3$.

Example 2: Solve $5 z-12=-2$ using inverse operations.

$$
5 z-12=-2
$$

$$
5 z-12+12=-2+12
$$

$$
5 z=10
$$

$$
\frac{5 z}{5}=\frac{10}{5}
$$

$$
z=2
$$

Given

Use the same inverse operation (addition) on both sides of the equation.

Simplify
Use the same inverse operation (division) on both sides of the equation.

Simplify

The solution is $z=2$.

Example 3: Solve $4 n+3$ = -5 using inverse operations.

$4 n+3=-5$	Given $4 n+3-3=-5-3$ $4 n=-8$ $4 n$ Use the same inverse operation (subtraction) on both sides of the equation.
$n=-2$	Simplify
Use the same inverse operation (division) on both sides of the equation.	
Simplify	

The solution is $n=-2$.

Example 4: Write an equation for the following, and then solve: "Twenty-three is five more than three times a number".

$23=5+3 x$

$$
23-5=5+3 x-5
$$

$$
23-5=5-5+3 x
$$

$$
18=3 x
$$

$$
6=x(\text { or } x=6)
$$

Subtract 5 from both sides of the equation (inverse of addition).

Use the commutative property on the right side of the equation by switching $3 x$ and -5 around.

Simplify

The solution is $x=6$.

Example 5: Write an equation for the following, and then solve: For the tournament game, Andrew bought an adult ticket for $\$ 7.50$ and 5 student tickets. If the total cost of the tickets were $\$ 30$, what was the price of a student ticket?

Think algebraically.

Let $t=$ the price of a student ticket.

$5 t$

$$
5 t+7.50
$$

30
$5 t+7.50=30$
Now solve.

$$
\begin{aligned}
& 5 t+7.50=30 \\
& 5 t+7.50-7.50=30-7.50
\end{aligned}
$$

$$
5 t=22.50
$$

$$
t=4.50
$$

price of 5 student tickets
price of the adult ticket added to the price of student tickets (total cost) Total cost is given.
total cost $=$ total cost

Use the inverse operation of addition and subtract 7.50 from both sides of the equation.

Simplify.
Divide.
Each student ticket costs $\$ 4.50$.

