RELATIONS AND FUNCTIONS

In this unit, you will become an investigator by trying to piece together some data given in a chart. You will decide if the data is a relation or a function and write an equation to relate the data.

Relations

Relations and Functions

Relations

A list of ordered pairs like this (1,2),(2,4),(3,6),(4,8) is called a relation.

Take a careful look at each abscissa (first part of the pairs) $\{1, 2, 3, 4\}$ and notice that if each number is multiplied by 2, the result is $\{2, 4, 6, 8\}$, the ordinate (the second corresponding part of each pair in the relation).

If the ordered pair in this relation is represented generally as (x, y), then we can conclude that y = 2x, and we then can predict more pairs in the relation.

Example: What is the ordered pair in this relation, y = 2x, when the abscissa is a 9?

y = 2x	Relationship of the ordered pairs.	
y = 2(9)	Substitute 9 for " x ".	
<i>y</i> = 18	Simplify.	
The ordinate is 18.		

The ordered pair is (9,18).

Now look at this relation: (1,1), (2,4), (3,9), (4,16)

$$(1,1), (2,4), (3,9), (4,16) \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ (1,1^2), (2,2^2), (3,3^2), (4,4^2)$$

Can you see that $y = x^2$?

Good!

How about this relation? (1,0), (2,1), (3,2), (4,3)

Can you see that y = x - 1? \checkmark

Looking for a pattern helps us to predict ordered pairs of a relation.

Relations and Functions

Some relations can be thought of as **functions.** In a function, the output is related to the input through a function rule.

Look at the function y = 5x.

Input a number (x) through the function rule (5x) to get the output (y).

y = 5x				
y = 5 times x				
Input (<i>x</i>)	Function Rule (5 <i>x</i>)	Output (y)		
1	5 times 1	5		
2	5 times 2	10		
3	5 times 3	15		
4	5 times 4	20		
5	5 times 5	25		

Example 1: What values are the output for the function y = x + 4 when x equals 12, 13, 14, 15 and 16? Make a table to organize and display the results.

y = x + 4			
y = x plus 4			
Input (<i>x</i>)	Function Rule $(x + 4)$	Output (y)	
12	12 + 4	16	
13	13 + 4	17	
14	14 + 4	18	
15	15 + 4	19	
16	16 + 4	20	

Input a number (x) through the function rule (x + 4) to get the output (y).

Functions may be graphed in a coordinate plane. Use the input as the *x*-coordinate and the output as the *y*-coordinate and write ordered pairs (x, y).

Let's take a look at the graph of a *linear* function; that is, a function that has a straight line as its graph.

Example 2: Determine the graph of the function y = 2 + x using the following values for x: 0, 1, 2, 3, and 4. Make a table to organize and display the results.

Input a number (x) through the function rule (2 + x) to get the output (y).

Write the input and the output as a set of ordered pairs to prepare for graphing the function.

y = 2 + x				
y equals 2 plus x				
Input (<i>x</i>)	Function Rule $(2 + x)$	Output (y)	Ordered Pairs	
0	2 + 0	2	(0,2)	
1	2 + 1	3	(1,3)	
2	2 + 2	4	(2,4)	
3	2 + 3	5	(3,5)	
4	2 + 4	6	(4,6)	

Use the ordered pairs to plot the points. Draw a straight line through the points.

Since the graph of this function forms a straight line, the function is considered **a linear function.**

Now let's look at the differences between a relation and function and define each one of them.

relation: a pairing of a set of numbers generally represented as a set of ordered pairs.

Example 3: Write the data that represents the relation shown below as a set of ordered pairs.

Height (inches)	Weight
68	125
64	118
65	112
72	145
64	126
67	130
66	128

The set of ordered pairs is:

 $\{(68, 125), (64, 118), (65, 112), (72, 145), (64, 126), (67, 130), (66, 128)\}$

*Notice in this example that there are repeated numbers in the height column. Because of this, the chart and set of ordered pairs only represents a **relation**.

function: a pairing between two sets of numbers in which each element in the first set is paired with **exactly** one element of the second set.

11	63
12	64
13	65
14	70
15	72
16	72

Example 4: Write the data that represents the function shown below as a set of ordered pairs.

The set of ordered pairs is:

 $\{(11, 63), (12, 64), (13, 65), (14, 70), (15, 72), (16, 72)\}$

*Notice in this example that there are no repeated values in the first column. Because of this, the chart and the set of ordered pairs represent a **function**.

In common terms,

a relation is a set of ordered pairs

and

a **function** is a set of ordered pairs where the first coordinates (the *x*-coordinates) are all different.