RELATI ONS AND FUNCTIONS

In this unit, you will become an investigator by trying to piece together some data given in a chart. You will decide if the data is a relation or a function and write an equation to relate the data.

Relations

Relations and Functions

Relations

A list of ordered pairs like this $(1,2),(2,4),(3,6),(4,8)$ is called a relation.
Take a careful look at each abscissa (first part of the pairs) $\{1,2,3,4\}$ and notice that if each number is multiplied by 2 , the result is $\{2,4,6,8\}$, the ordinate (the second corresponding part of each pair in the relation).

If the ordered pair in this relation is represented generally as (x, y), then we can conclude that $y=2 x$, and we then can predict more pairs in the relation.

Example: What is the ordered pair in this relation, $y=2 x$, when the abscissa is a 9 ?

$$
\begin{array}{ll}
y=2 x & \text { Relationship of the ordered pairs. } \\
y=2(9) & \text { Substitute } 9 \text { for } " x " . \\
y=18 & \text { Simplify. }
\end{array}
$$

The ordinate is 18 .
The ordered pair is $(9,18)$.
Now look at this relation: $(1,1),(2,4),(3,9),(4,16)$
$(1,1),(2,4), \quad(3,9),(4,16)$

$\left(1,1^{2}\right),\left(2,2^{2}\right),\left(3,3^{2}\right),\left(4,4^{2}\right)$
Can you see that $y=x^{2}$?
Good!

How about this relation? $(1,0),(2,1),(3,2),(4,3)$

$$
\begin{array}{cccc}
(1,0), & (2,1), & (3,2), & (4,3) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
(1,1-1), & (2,2-1), & (3,3-1), & (4,4-1)
\end{array}
$$

Can you see that $y=x-1 ? \checkmark$
Looking for a pattern helps us to predict ordered pairs of a relation.

Relations and Functions

Some relations can be thought of as functions. In a function, the output is related to the input through a function rule.

Look at the function $\boldsymbol{y}=5 \boldsymbol{x}$.
Input a number (\boldsymbol{x}) through the function rule ($5 \boldsymbol{x}$) to get the output (\boldsymbol{y}).

$\boldsymbol{y}=\mathbf{5 x}$		
$\boldsymbol{y}=\mathbf{5}$ times \boldsymbol{x}		
Input (x)	Function Rule (5x)	Output (y)
1	5 times 1	5
2	5 times 2	10
3	5 times 3	15
4	5 times 4	20
5	5 times 5	25

Example 1: What values are the output for the function $\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{4}$ when x equals $12,13,14,15$ and 16 ? Make a table to organize and display the results.

Input a number (x) through the function rule $(x+4)$ to get the output (y).

$y=x+\mathbf{4}$		
$\boldsymbol{y} \boldsymbol{x}$ plus 4		
Input (x)	Function Rule $(\boldsymbol{x}+\mathbf{4})$	Output (y)
12	$12+4$	16
13	$13+4$	17
14	$14+4$	18
15	$15+4$	19
16	$16+4$	20

Functions may be graphed in a coordinate plane. Use the input as the x-coordinate and the output as the y-coordinate and write ordered pairs (x, y).

Let's take a look at the graph of a linear function; that is, a function that has a straight line as its graph.

Example 2: Determine the graph of the function $\boldsymbol{y}=\mathbf{2 + x}$ using the following values for x : $0,1,2,3$, and 4. Make a table to organize and display the results.

Input a number (\boldsymbol{x}) through the function rule $(2+\boldsymbol{x})$ to get the output (y).

Write the input and the output as a set of ordered pairs to prepare for graphing the function.

$\boldsymbol{y}=\mathbf{2 + \boldsymbol { x }}$			
\boldsymbol{y} equals 2 plus \boldsymbol{x}			
Input (x)	Function Rule (2 + x)	Output (y)	Ordered Pairs
0	$2+0$	2	$(0,2)$
1	$2+1$	3	$(1,3)$
2	$2+2$	4	$(2,4)$
3	$2+3$	5	$(3,5)$
4	$2+4$	6	$(4,6)$

Use the ordered pairs to plot the points. Draw a straight line through the points.

Since the graph of this function forms a straight line, the function is considered a linear function.

Now let's look at the differences between a relation and function and define each one of them.
relation: a pairing of a set of numbers generally represented as a set of ordered pairs.

Example 3: Write the data that represents the relation shown below as a set of ordered pairs.

Height (inches)	Weight
68	125
64	118
65	112
72	145
64	126
67	130
66	128

The set of ordered pairs is:
$\{(68,125),(64,118),(65,112),(72,145),(64,126),(67,130),(66,128)\}$
*Notice in this example that there are repeated numbers in the height column. Because of this, the chart and set of ordered pairs only represents a relation.
function: a pairing between two sets of numbers in which each element in the first set is paired with exactly one element of the second set.

Example 4: Write the data that represents the function shown below as a set of ordered pairs.

11	63
12	64
13	65
14	70
15	72
16	72

The set of ordered pairs is:
$\{(11,63),(12,64),(13,65),(14,70),(15,72),(16,72)\}$
*Notice in this example that there are no repeated values in the first column. Because of this, the chart and the set of ordered pairs represent a function.

In common terms,
a relation is a set of ordered pairs
and
a function is a set of ordered pairs where the first coordinates (the x-coordinates) are all different.

