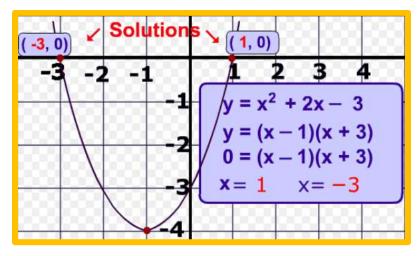
SOLVING QUADRATIC EQUATIONS BY GRAPHING



Unit Overview

In this unit, students will be able to:

- Solve quadratic equations through graphing
- Solve linear equations through graphing

Key Concepts

- *x*-intercept/root/zero/solution
- Number of solutions

In this unit, we will be using your TI-30XIIS calculator, as well as the Desmos online graphing calculator. Click on the words <u>DESMOS</u> to open up the graphing calculator.

Connection to Previous Units

- We will be incorporating the strategies to graph quadratic functions that we learned in Units 23 and 24.
- We will also be connecting to Units 3 and 4 where we solved equations.

Solving Quadratic Equations by Graphing

Quadratic equations, like quadratic functions, contain x^2 within the equation (sometimes after multiplying polynomials together).

A solution to an equation is any value that makes the equation true.

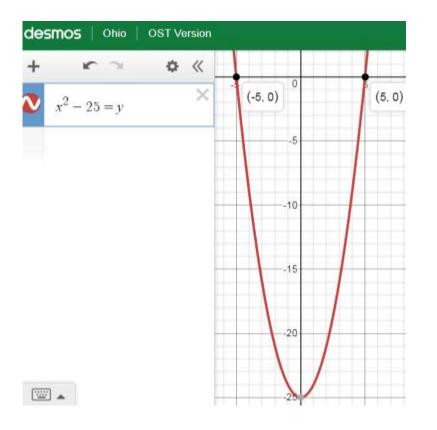
Quadratic equations have none, one or two solutions

Example A: Solve the equation, $x^2 - 25 = 0$.

You can likely determine one solution in your head, 5, because $5^2 = 25$.

Another solution is $-5 \rightarrow (-5)^2 = 25$.

Let's take the original equation, replace 0 with y, and graph $x^2 - 25 = y$ on Desmos:



For the graph, we replaced 0 with y. The only points on the graph where the y-coordinates = 0 are on the x-axis.

What are the *x*-intercepts on the graph? (-5, 0) and (5, 0)

The solutions to the equation are the *x*-intercepts on the graph.

To solve a quadratic equation by graphing:

1st: get all the terms on one side of the equation and 0 on the other side

 2^{nd} : replace 0 with y

 3^{rd} : graph the function and identify the *x*-intercepts

Remember that from past units, *x*-intercepts are also known as roots, zeros, and solutions \rightarrow when you put 0 in for *y*, you get the solutions for the equations.

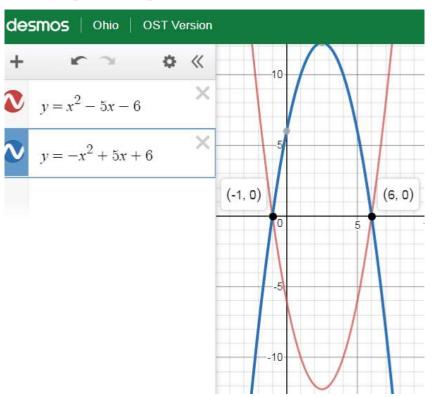
Example B: Solve the equation, $x^2 - 5x = 6$

1st: get everything on one side: $x^{2} - 5x = 6 \text{ or } x^{2} - 5x = 6$ $-6 -6 -x^{2} + 5x - x^{2} + 5x$ $x^{2} - 5x - 6 = 0 \quad 0 = -x^{2} + 5x + 6$

2nd: replace 0 with y: $x^2 - 5x - 6 = y$ or $y = -x^2 + 5x + 6$

3rd: graph and identify the *x*-intercepts:

I will graph both equations above:



For both parabolas, the *x*-intercepts are (-1, 0) and (6, 0). Thus, the solutions for the original equation are x = -1 or 6

Check your answers your TI-30XIIS calculator by substituting those solutions in for *x*:

$$x^2 - 5x = 6$$
 or $x^2 - 5x = 6$
(-1)² - 5•(-1) = 6 (6)² - 5•(6) = 6
1 + 5 = 6 36 - 30 = 6

Example C: Solve the equation, $(x - 8)^2 - 6 = 48$

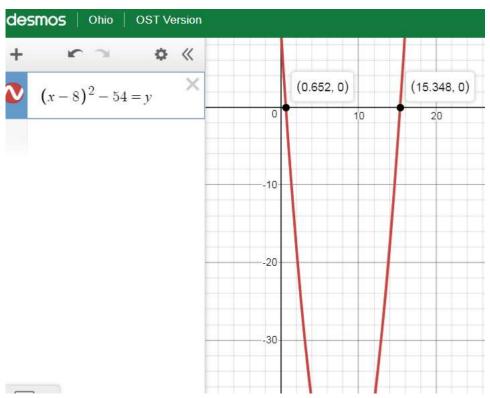
1st: get everything on one side:

 $(x-8)^2 - 6 = 48$ -48 -48 $(x-8)^2 - 54 = 0$

 2^{nd} : replace 0 with *y*:

 $(x-8)^2 - 54 = y$

3rd: graph and identify the *x*-intercepts:



For the parabola, the *x*-intercepts listed are probably rounded decimals: (0.652, 0) and (15.348, 0). Thus, the solutions for the original equation are approximately: x = 15.348 or 0.652

Check your answers your TI-30XIIS calculator by substituting those solutions in for *x*:

 $(15.348 - 8)^2 - 6 = 48$ 47.993 ≈ 48 $(0.652 - 8)^2 - 6 = 48$ 47.993 ≈ 48

≈ means approximately equal to

The exact values of the *x*-intercepts (solutions) are $8 + 3\sqrt{6}$ and $8 - 3\sqrt{6}$.

The answers may be written as $x = 8 \pm 3\sqrt{6}$.

Check those values using your TI-30XIIS calculator.

 $8 + 3\sqrt{6} \approx 15.348$

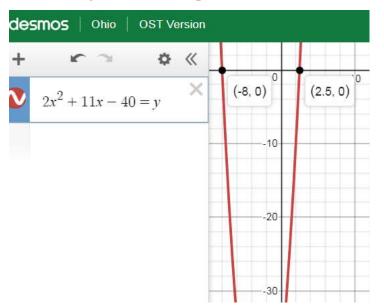
 $8-3\sqrt{6}\approx 0.652$

Example D: Solve the equation, $2x^2 + 15x - 51 = 4x - 11$

1st: get everything on one side: $2x^{2} + 15x - 51 = 4x - 11$ -4x + 11 - 4x + 11 $2x^{2} + 11x - 40 = 0$

 2^{nd} : replace 0 with *y*: $2x^2 - 3x - 40 = y$

3rd: graph and identify the *x*-intercepts:



By looking at the *x*-intercepts, the solutions are x = -8 and x = 2.5.

Check your answers your TI-30XIIS calculator by substituting those solutions in for *x*:

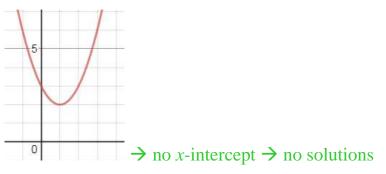
$$2 \cdot (-8)^2 + 15 \cdot (-8) - 51 = 4 \cdot (-8) - 11$$

 $-43 = -43$
 $2 \cdot 2.5^2 + 15 \cdot 2.5 - 51 = 4 \cdot 2.5 - 11$
 $-1 = -1$

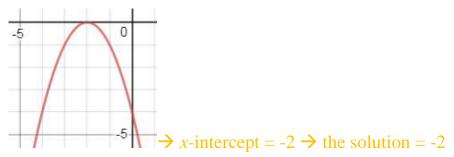
Determining the Number of Solutions from a Graph

Number of solutions for Quadratic Equations:

No solutions: there are no x-intercepts: the graph never crosses the x-axis



One solution: the vertex lies on the *x*-axis

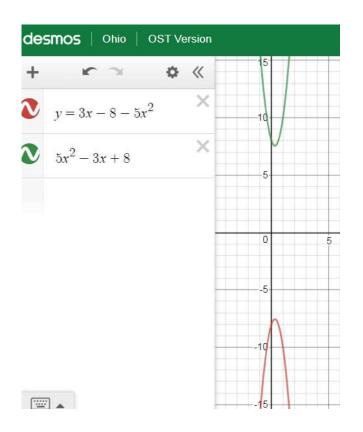


Two solutions: the parabola crosses the vertex twice See Examples A, B, C, and D

Example E: Solve the equation: $5x^2 = 3x - 8$

1st: get everything on one side: $5x^2 = 3x - 8$ or $5x^2 = 3x - 8$ $-5x^2 -5x^2 -3x + 8 -3x + 8$ $0 = 3x - 8 - 5x^2 -3x + 8 = 0$ $0 = -5x^2 + 3x - 8$ 2nd: replace 0 with y: $y = 3x - 8 - 5x^2$ or $5x^2 - 3x + 8 = y$

3rd: graph and identify the *x*-intercepts:

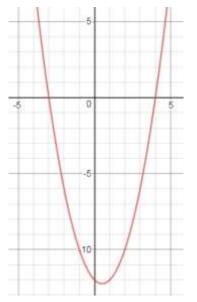


Both equations are graphed. Neither crosses the *x*-axis, so there are no *x*-intercepts. Thus the answer for the original equation is 'No solutions'.

Click on the video for further explanation and practice: <u>Solve Quadratic equations by graphing</u>

Let's practice.

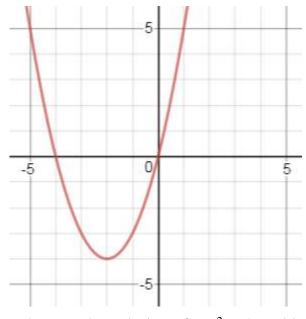
1.) The graph of $y = x^2 - x - 12$ is shown.



What are the solutions for $x^2 - x - 12 = 0$? Choose all that apply:

- A. 0
- B. 3
- **C**. 4
- D. -3
- E. -4
- F. 12
- G. -12
- H. no solutions

2.) The graph of $y = x^2 + 4x$ is shown.



What are the solutions for $x^2 + 4x = 0$? Choose all that apply:

A. 0

B. -4

- C. 4
- D. -2

E. -2

- F. 5
- G. -5

H. no solutions

3.) The graph of $y = x^2 - 9$ is shown.



What are the solutions for $x^2 - 9 = 0$? Choose all that apply:

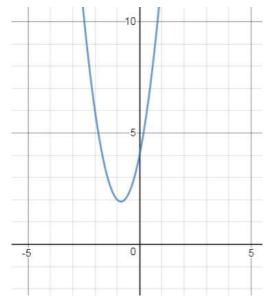
- A. 0
- B. 9
- C. -9
- D. 3
- E. -3
- F. no solutions

4.) The graph of $y = \frac{1}{2}x^2 - \frac{21}{4}x + \frac{45}{4}$ is shown.

What are the solutions for $\frac{1}{2}x^2 - \frac{21}{4}x + \frac{45}{4} = 0$? Choose all that apply:

- A. 0
- B. 5.25
- C. 3
- D. -2.5
- E. 11
- F. 7.5
- G. -5
- H. no solutions

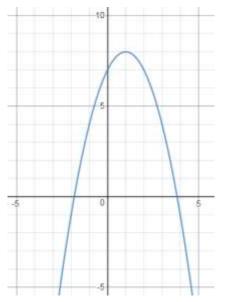
5.) The graph of $y = 3x^2 + 5x + 4$ is shown.



What are the solutions for $3x^2 + 5x + 4 = 0$? Choose all that apply:

- A. 0
- B. 4
- C. 3
- D. 5
- E. -3
- F. -4
- G. -5
- H. no solutions

6.) The graph of $y = -x^2 + 2x + 7$ is shown.



What are the solutions for $-x^2 + 2x + 7 = 0$?

A. $2 \pm 4\sqrt{5}$ B. $3 \pm 5\sqrt{2}$ C. $1 \pm 2\sqrt{2}$ D. $4 \pm 3\sqrt{5}$

7.) Solve the equation: $x^2 - 36 = 0$

- A. $x = \pm 36$
- B. $x = \pm 6$
- C. $x = \pm 18$
- D. No solutions

8.) Solve the equation: $x^2 - 7x = 18$ A. x = 7 and x = 18B. x = -9 and x = 2C. x = -7 and x = -18D. x = 9 and x = -2

9.) Solve the equation: (x + 4)² + 8 = 17
A. x = -1 and -7
B. x = -4 and 8
C. x = 6 and -2

D. x = 8 and -17

10.) Solve the equation: $2x^2 + 9 = 35$

A. $x = \pm \sqrt{26}$ B. $x = \pm \sqrt{35}$ C. $x = \pm \sqrt{13}$ D. no solutions

11.) An equation is shown.

 $2x^2 - 5x - 3 = 0$

What values of *x* make the equation true?

12.) Solve the equation $x^2 + 6x = -\frac{11}{4}$ A. x = -3 and x = 2B. x = -2 and x = 3C. $x = \frac{1}{2}$ and $x = -\frac{11}{2}$ D. $x = -\frac{1}{2}$ and $x = -\frac{11}{2}$

13.) An equation is shown.

 $16x^2 + 10x - 27 = -6x + 5$

What are the solutions to this equation?

14.) An equation is shown.

$$x^2 - 6x + 9 = 0$$

How many solutions does this equation have?

- A. no solutions
- B. one solution
- C. two solutions
- D. infinite solutions

15.) An equation is shown.

 $-3x^2 - 5x = 11$

How many solutions does this equation have?

A. no solutions

- B. one solution
- C. two solutions
- D. infinite solutions

16.) An equation is shown.

(x+6)(x-8)=0

What are the solutions to this equation?

x =	-6	J
x =	8	

Solving Linear Equations by Graphing

In units 2 and 3, we studied how to solve linear equations by following these steps:

- 1. Eliminate parentheses by using the distributive property
- 2. Simplify each side by combining like terms
- 3. Get the variables on the same side (use the addition or subtraction property of equality)
- 4. Get the variable by itself using the inverse of the properties of equalities

Example F: Solve the equation for *x*:

2(3x+4) - 2 + 8x = 4x + 73	
<mark>2(3x + 4)</mark> – 2 + 8x = 4x + 73	*Eliminate parentheses by using the distributive property
6x + 8 - 2 + 8x = 4x + 73	*Combine like terms on the left side of the equation
14x + 6 = 4x + 73	
-4x -4x	* Get the variables on the same side
10x + 6 = 73	
-6 -6	*get the variable by itself
10x = 67	

 $\div 10 \div 10$ x = 6.7

Another way to solve this equation is to follow the same steps mentioned earlier in this unit for quadratic equations:

- 1st: get all the terms on one side of the equation and 0 on the other side
- 2^{nd} : replace 0 with y
- 3^{rd} : graph the function and identify the *x*-intercepts

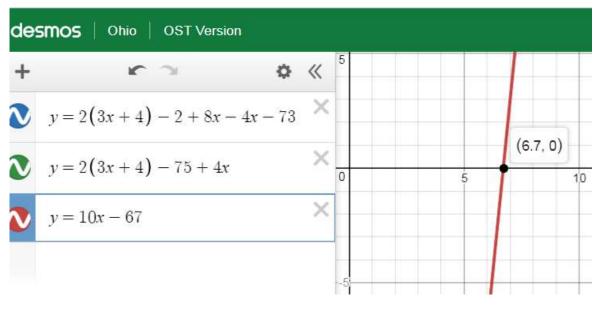
Let's re-try Example F using this strategy:

2(3x + 4) - 2 + 8x = 4x + 73-73 -4x -4x -73 \leftarrow get all the terms on one side $2(3x + 4) - 2 + 8x - 4x - 73 = 0 \leftarrow \text{no like terms combined}$ $2(3x + 4) - 75 + 4x = 0 \leftarrow \text{some like terms combined}$ $10x - 67 = 0 \leftarrow \text{all like terms combined}$

 2^{nd} : replace 0 with y

 3^{rd} : graph the function and identify the *x*-intercepts

You can use any of the three equations listed above, whether you combine like terms or not. Each has the same *x*-intercept when graphed on Desmos:



The *x*-intercept is (6.7, 0), so the solution is x = 6.7.

Use your calculator to check your solution:

$$2(3 \bullet 6.7 + 4) - 2 + 8 \bullet 6.7 = 4 \bullet 6.7 + 73$$

It does not necessarily work when you have an equation with no solutions or infinite solutions (x = all real numbers).

Example G:

```
6x + 5 = 2(3x + 4)

6x + 5 = 6x + 8

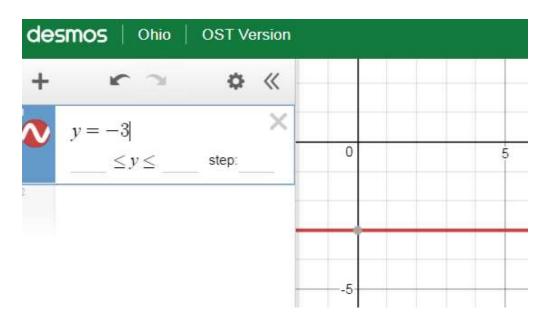
-6x \qquad -6x

5 = 8 \rightarrow false statement \rightarrow no solutions
```

If you move everything to one side:

```
6x + 5 = 6x + 8
-6x - 8 - 6x - 8
-3 = 0
```

Replace 0 with $y \rightarrow -3 = y$



no *x*-intercept \rightarrow no solutions

Example H:

```
8x + 4 = 4(2x + 1)

8x + 4 = 8x + 4

-8x - 8x

4 = 4 \rightarrow \text{true statement} \rightarrow x = \text{all real numbers}
```

If you move everything to one side:

$$8x + 4 = 8x + 4$$

- $8x - 4 - 8x - 4$
 $0 = 0$

Replace 0 with $y \rightarrow y = 0$

+	r	2	\$ ≪		
	v = 0		×		
	10	•	10	0	5

 $y = 0 \rightarrow$ runs along the entire *x*-axis \rightarrow infinite solutions $\rightarrow x =$ all real #s

Let's practice. Solve the equation for the variable.

17.) -2x + 58 = 8x - 41Answer x = 9.918.) 4(2x + 9) - 3x = 62Answer x = 5.219.) 2(3x + 8) + 2x = 10x - 45Answer x = 30.520.) Determine the solution for: 6x + 8 + 10x = 4(3x - 8)A. -10 B. 8

- C. 12
- D. -5