
CONVERGENT AND DIVERGENT INFINITE SERIES: 
MATHEMATICAL INDUCTION AND THE BINOMIAL 

THEOREM 
 
In the last unit we examined techniques for establishing the limits of sequences and used a few 
examples of infinite series to illustrate the increased complexity of problems that deal with 
infinite processes. In this unit we will examine infinite series in more detail and develop 
techniques for establishing their sums. 

 
Infinite Series: The Ratio Test 

 
Infinite Series: The Polynomial Quotient Test 

 
Infinite Series: Combination Tests 

 
Principle of Math Induction 

 
The Binomial Theorem 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Infinite Series: The Ratio Test 
 
As stated in the last unit, infinite series may actually sum to a final value. Their sums can be 
infinite, or they can be inconclusive. When a series sums to a final value, then the series 
“converges” or is “convergent”. When a series sums to infinity or is inconclusive, then the series 
“diverges” or is “divergent”.  
 
Ratio Test for Infinite Series: Let na  and 1na +  be two consecutive terms of a positive series. 

Suppose 1lim n
n n

a r
a
+

→∞
=  where r∈ . Then the series converges if 1r < ; diverges if 1r > and the 

series may or may not converge if 1r = . 
 
It is important to note that the value of " "r  is not the sum of the series. This value only tells you 
that the series converges but not to what value. 
 

Example #1: Use the ratio test to determine if the following series converges or diverges. 
 

1 2 3 4 .......... ......
3 9 27 81 3n

n
+ + + + + +  

 
Step #1: Find the general expression for the na  and 1na +  terms of the series. (Use 
techniques from previous units to assist in this process when the general pattern is not 

provided.) In this example 
3n n
na = :  Therefore the 1na +  term is,  

1 1
1

3n n
na + +
+

= . 

 
Step #2: Find the ratio of  the two terms and simplify. 
 

11
1

1
1 3 1 3 13

33 3 3
3

n nnn
n n

n
n

n
a n n n

na n n n
++

+

+
+ + +

= = ⋅ = ⋅ =
⋅

 

 
Step #3: Find the limit of the ratio. 
 

1 1lim  
3 3n

n r
n→∞

+
= =

⋅
  

 
(Clearly the denominator and numerator increase at the same rate as n →∞  because 
the “+1” term contributes nothing to the result at ∞ ) 

 



Step #4: Conclusion: Since 1 1
3

r = <  the series converges. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Infinite Series: The Polynomial Quotient Test 
 
Polynomial Quotient Test for Convergence (PQT) 
 
Suppose oA  and oB are polynomial expressions of the forms: 
 

1 2 2 0
1 2 2 1( ) .......k k k

o o o k k kP A a x a x a x a x a x a x− −
− −= + + + + + +  

 
1 2 2 0

1 2 2 1( ) .......n n n
o o o n n nQ B b x b x b x b x b x b x− −

− −= + + + + + +  
 

where ,n k∈ : ,a b∈ . 
 

Then, for ando o
n n

P Q
x x

 the series converges for: 

 
31 2 4

1 2 3 40 0
0 031 2 40 0

1 2 3 4

 . . .
lim

 . . .

o k
k n k nn k nk

k
o nn
n n

P a aa a a
A a x a xx x x x x x

Q b bb b bB b x b x
x x x x x x

− −−
→∞

+ + + + +
= = + =

+ + + + +
 

 
provided 0k n− ≤ ; otherwise the series diverges. 

 
Although this theorem appears quite complicated, its application to series convergence is quite 
useful and not too difficult to determine as the following examples illustrate; but first, a special 
notation is described to indicate series. 
 
To denote a series of any form, we use the Geek letter “Sigma” which appears as:   
 

1 2 3
1

.....
k

n k
n

a a a a a
=

= + + +∑  

 

If the series is infinite we have 1 2 3
1

..... ......n k
n

a a a a a
∞

=
= + + + +∑  

 
 
 
 
 
 
 
 



The bottom notation " 1"n = , indicates where the series begins and the top notation, (   or  )k ∞ , 
where the series ends. 
 
 For example: 
 

8

2 2 2 2 2
5

1 1 1 1 1
5 6 7 8n n=

= + + +∑   which when evaluated 0.1038= . 

 

0
( 1) 2 2 2 2 2 2 2 ...n

n

∞

=
− ⋅ = − + − + − +∑  which we learned in a previous unit diverges. 

 
Now that we have notation for series, we can use the Polynomial Quotient Test (PQT) in the 
following examples. 
 
Determine if the following series converge or diverge. 
 

 Example #1: 
2

2
1

3 2
4 5n

n n
n

∞

=

+
+

∑  

 
Step #1: By the PQT 2( ) 3 2oP A n n= +  and 2( ) 4 5oQ B n= +  and 2k m= = . (For the 
highest exponent on " "n in each polynomial – use " "m for the exponent on ( )oQ B  so 
that there is no confusion). 

 

a) Find 
2

2 2 2
( ) 3 2 23oP A n n

nn n n
= + = + . 

 
 

b) Find 
2

2 2 2 2
( ) 4 5 54oQ A n

n n n n
= + = + . 

 

Step #2: Find 
2

22

( ) 23
lim ( ) 54

o

n o

P A
n n

Q B
nn

→∞

+
=

+
. 

 

Clearly as n →∞  “ 2
n

+ ” and “ 2
5

n
+ ” each come closer to zero. Therefore, at ∞  the 

expression becomes 3 0 3
4 0 4
+

=
+

; hence, the series converges. 

 



Example #2: 
2

3
1

2 6 7
5 4 22n

n n
n n

∞

=

+ −

+ +
∑  

 
Step #1: 2

0 ( ) 2 6 7P A n n= + −  3
0 ( ) 5 4 22Q B n n= + +  

 
  2  and 3k m⇒ = =  

 
Step #2: Since ,k m<  we will divide both numerator and denominator by 3n  which 
is the highest power term in the denominator which is stated in the theorem as: 

 
( )

( )

o
n

o
n

P A
x

Q B
x

 even though the highest power on ( )oP A  is k . 

 
The result of this division is: 

 

2 3

1
2 3

2 6 7

4 225n

n n n

n n

∞

=

+ −

+ +
∑  

 
Clearly as n →∞  every term in the expression except the “5” in the denominator 
approaches zero which gives 

 

1

0 0 0 0 0
5 0 0 5n

∞

=

+ +
= =

+ +∑ .  Therefore the series converges. 

 

Example #3: Find the value of 
2

4 21

4 6

5 1n

n

n n

∞

=

−

+ −
∑ . 

 
Step #1:  2( ) 4 6oP A n= −  2k⇒ =     

 4 2( ) 5 1oQ B n n= + −       4m⇒ =  
 

However ,the presence of the " " symbol calls for a bit more analysis. Recall that 

given the inequality 1 1    a b
a b

> ⇒ < . 

 

Consider then 4 2 45 1n n n+ − >  ⇒   4 2 4
1 1
5 1n n n

<
+ −

 



 

Which therefore implies that 24 2 4

1 1 1

5 1 nn n n
< =

+ −
. 

   
Hence 2m =  and not 4m =  as stated above, or, stated differently: 
 

Step #2:        Find 

2

2 2 2

4 2 4 2

2 444

( ) 4 6 6 64 4

( ) 5 15 1 5 1 1

o
m

o
m

P A n
n n n n

Q B n n n n
n n nnn

− − −
= = =

+ − + − + −
 

Now find:  
2

2 4

64
4 0 4lim 4

5 1 1 0 0 11
n

n

n n

→∞

−
−

= = =
+ −+ −

 

 
 
Therefore the series converges. 

 

Example #4: Find the convergence or divergence of:  
4

3 2
1

9 5
6 5n

n
n n n

∞

=

−
+ +

∑ . 

 
Step #1:  4( ) 9 5oP A n= −              4k⇒ =  

   
3 2( ) 6 5oQ B n n n= + +         3m⇒ =  

 
Since k ≤ ,m  the series diverges. 

 
or 
 

3 3

23

( ) 9 5

( ) 5 16

o

o

P A n
n n

Q B
n nn

−
=

+ +
,  and 

 

3

2

9 5
0 5 5lim 5 1 6 0 0 66n

n
n nn

n n
→∞

−
− −

= = = −∞
+ ++ +

 

 
Therefore the series diverges. 



Infinite Series: Combination Tests 
 
The Ratio Test can be used in combination with the Polynomial Quotient Test (PQT) in the 
following manner. 
 

Example #1: Find the convergence or divergence of;  
1

2 7
2 ( 1)n

n

n
n

∞

=

+
+

∑ . 

 

Step #1: For the Ratio Test, the thn  term is 2 7
2 ( 1)n n

na
n
+

=
+

 and the  1n +  term is  

 11 1 1
2( 1) 7 2 2 7 2 9

2 ( 1 1) 2 ( 2) 2 ( 2)
nn n n

n n n a
n n n

++ + +
+ + + + +

= = =
+ + + +

 

 

⇒  Comparing : 
1

1
1

2 9
2 ( 1)(2 9)2 ( 2)

2 7 2 ( 2)(2 7)
2 ( 1)

nn
n

n
n

n

n
a n nn

na n n
n

+
+

+

+
+ ++= =

+ + +
+

 

 

=
2 2

2 2
2 ( 11 9) 11 9

2 2(2 11 14) 4 22 28

n

n
n n n n

n n n n
+ + + +

=
⋅ + + + +

 

 
Step #2: 2( ) 11 9 oP A n n= + + and 2( ) 4 22 28 oQ B n n= + +  
 

2k m⇒ = =  
 

Step #3:  
 

2 2

22

( ) 11 91

( ) 22 284

o

o

P A
n n n

Q B
n nn

+ +
=

+ +
 

 

2

2

11 91
1 0 0 1lim 22 28 4 0 0 44n

n n

n n
→∞

+ +
+ +

⇒ = =
+ ++ +

  

 
Therefore the series converges. 

 
 
 



Example #2: Determine if the following series converges. 
 

22 (5 )
5
6 5

n

n

n
a

n

⎛ ⎞
⎜ ⎟
⎝ ⎠=

+
 

    
By the Polynomial Quotient Test 2,  1,k m= =  therefore the series would diverge. 

However the presence of the 2
5

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

term may have an effect on this outcome, so again the 

Ratio Test comes into play. 
 

Step #1: 

22 (5 )
5
6 5

n

n

n
a

n

⎛ ⎞
⎜ ⎟
⎝ ⎠=

+
 

1
2

1

2 (5( 1) )
5

6( 1) 5

n

n

n
a

n

+

+

⎛ ⎞ +⎜ ⎟
⎝ ⎠=

+ +
 

 
Step #2: Simplify 1na + . 

  

2

1

2 2 (5( 2 1))
5 5

6 11

n

n

n n
a

n+

⎛ ⎞⎛ ⎞ + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠=

+
 = 

22 2 (5 10 5)
5 5

6 11

n
n n

n

⎛ ⎞⎛ ⎞ + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

+
 

 

Step #3: Find the Ratio of 1n

n

a
a
+ . 

 

2 22 2 2(5 10 5) (5 )
5 5 5

6 11 6 5

n n
n n n

n n

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠÷

+ +
 = 

2

2

2 2 (5 10 5)
6 55 5

6 11 2 (5 )
5

n

n

n n
n

n
n

⎛ ⎞ + +⎜ ⎟ +⎝ ⎠ ×
+ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 
2

2

2 3 2

2 (5 10 5)(6 5) (2 4 2)(6 5)5
5 (6 11) 30 55

n n n n n n
n n n n

+ + + + + +
=

+ +
 

 
Multiplying the numerator using algebra techniques gives the expression: 

 
2 3 2(2 4 2)(6 5) 12 34 32 10n n n n n n+ + + = + + +  

 
3 2

1
3 2

12 34 32 10
30 55

n

n

a n n n
a n n
+ + + +
=

+
 



 
 

Step #4: Use the PQT 2k m= = . 
 

2 3
34 32 1012

12 2lim  55 30 530n
n n n

n
→∞

+ + +
= =

+
 

 
Therefore the series converges. 
 

Up to this point, all that has been introduced is to test whether an infinite series converges or 
diverges; but, no actual sum has been calculated. As has been noted over the last three units, 
many series do sum to a finite value that can be calculated. However techniques, which find 
actual sums, can be quite complicated and are better left for another course. For the remainder of 
this unit, we will examine two topics that play an important role in higher mathematics and 
extend the techniques and concepts learned thus far. These topics are the Principle of Math 
Induction and the Binomial Theorem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Principle of Math Induction 
 
For the past three units, we have often found single expressions that calculate the “nth” term in a 
sequence or expressions that sum a series. Yet when dealing with infinite processes, it is 
sometimes difficult to be sure if the expression chosen actually represents all terms even as n  
becomes quite large or infinite. Although infinity can be assessed and analyzed to a certain 
degree, no one has actually dealt with its meaning or value in quite the same way that we deal 
with a simple sum such as “2 + 3” and etc. In fact, calculations on even the largest values by the 
most sophisticated computers still leave an infinite number of calculations left undone. At best, 
values of infinite processes are merely “predictions” on those values based upon the soundest 
logical processes available. The most commonly used technique to logically determine that a 
chosen or observed pattern or process will continue to infinity is the Principle of Math 
Induction (PMI). Simply stated, the PMI operates on the following three premises: 
 

1.) An actual pattern (or formula) can be determined for the first " "n terms in a sequence 
or series. 

 
2.) The determined pattern can be tested for the next " 1"n +  term. 

 
 

3.) If the pattern continues for this next term. then we conclude that the pattern will 
continue for the remaining infinite number of terms. 

 
Actually determining the formula to be tested by PMI can be quite difficult and will not be dealt 
with in this unit. In example #2 in the unit link to “Infinite Series: Combination Tests”, the first 
five terms of the series are: 
 

22 (5 )
2 16 72 256 32 5..... ....

11 85 575 3625 875 6 5

n
n

n

⎛ ⎞
⎜ ⎟
⎝ ⎠+ + + + + + +

+
 

 
To determine this formula, the pattern is not readily apparent in the first five terms and may not 
even be apparent for the first 1000 terms or more. Therefore, the examples and exercises for this 
material will simply test a pattern that is already determined. 
 
The procedure for testing patterns by PMI is as follows: 
 

Step #1: Verify the formula works for 1n = . 
 
Step #2: Assume the formula works for n k= . 
 
Step #3: Demonstrate the formula works for 1n k= + .  

 
 
 



 
The following examples demonstrate this process. 

 
Example #1: Use PMI to verify that: 
 

( 1)1 2 3 4  . . . 
2

n nn +
+ + + + + =  

 
(The formula to be verified is on the right side of the equals sign). 

 
Step #1: Demonstrate the formula works for 1n = . 

 
For 1,n =  the first term in the series is “1”. Therefore we need to show that 

 

 ( 1) 1
2

n n +
=  when 1n = . 

 

 ⇒  1(1 1) 1
2
+

=  

  

  1(2) 2 1
2 2

= =    verified 

 
Step #2: Assume the formula works for n k= , or that 

 

 ( 1)1 2 3 4  . . . 
2

k kk +
+ + + + + =  

 
Step #3: Demonstrate the formula works for 1n k= + . 

 
 For 1n k= +  we have: 
 

( 1)(( 1) 1)1 2 3 4  . . . ( 1)
2

k kk k + + +
+ + + + + + + =  

 
The next task is simplify the right side of the equation and show that the left side 
returns the same result. 

 
Step #4: Simplify the right side. 

 

  ( 1)(( 1) 1) ( 1)( 2)
2 2

k k k k+ + + + +
=  

 
 



 
 
 

Step #5: Show the left side of the equation equals the right side. 
 

( 1)( 2)1 2 3 4  . . . ( 1)
2

k kk k + +
+ + + + + + + =  

 
From step #2 we know that 
 

( 1)1 2 3 4  . . . 
2

k kk +
+ + + + + =  

 
This value is now substituted into step #3 in the following manner. 

 

( 1)
2

1 2 3 4  . . . 

( 1) ( 1)( 2)     ( 1)
2 2

k k

k

k k k kk

+

+ + + + +

+ + +
⇒ + + =

 

 
  We now simplify and factor the left side. 
 

  

2

2

( 1) 2 2( 1)
2 2 2

3 2  
2

( 1)( 2)  
2

k k k k kk

k k

k k

+ + +
+ + = +

+ +
=

+ +
=

 

 
Since the left side does simplify to the right side, we conclude that the formula for 

calculating the sum of the first " "n natural numbers is ( 1)
2

n n + . 

 
Developing an intuitive sense for PMI often takes a great deal of time and practice to convince 
oneself that the procedure actually works and is not simply a “trick” of algebra as you may be 
thinking at this time. 

 
 
 
 



Example #2: Use PMI to show that: 
 

 (3 1)1 4 7 10  . . . (3 2)
2

n nn −
+ + + + + − =  

 
Step #1: Show true for 1n = . 

 

 1
1(3 1 1) 1 (3 1) 1 21    1

2 2 2
a ⋅ − ⋅ − ⋅

= ⇒ = = =  

 
Step #2: Accept true for n k= .  

 

 (3 1)  1 4 7 10  . . . (3 2)
2

k kk −
⇒ + + + + + − =  

 
Step #3: Demonstrate for 1n k= + . 

 
( 1)(3( 1) 1)1 4 7 10  . . . (3 2) (3( 1)) 2

2
k kk k + + −

+ + + + + − + + − =  

 
Step #4: Simplify the right side. 

 
( 1)(3( 1) 1) ( 1)(3 2)

2 2
k k k k+ + − + +

=  

 
Step #5: Demonstrate that the left side equals the right side by using substitution of 
step#2 into step #3. 

 

(3 1)
2

( 1)(3 2)1 4 7 10  . . . (3 2) (3 1)
2

k k

k kk k

−

+ +
+ + + + + − + + =  

 
(3 1) ( 1)(3 2)  (3 1)

2 2
k k k kk− + +

⇒ + + =  

 
2 23 6 2 3 5 2
2 2 2

k k k k k− + + +
+ =  

 
( 1)(3 2)

2
k k+ +

⇒  Verified 

 
 
 



 
Example #3: Use PMI to show that:  

 
2 2 2 2 2 (2 1)(2 1)1 3 5 7  . . . (2 1)

3
n n nn − +

+ + + + + − =  

 
Step #1: Show true for 1n = . 

 
1(2 1 1)(2 1 1)1

3

1(2 1)(2 1)1
3

1(1)(3) 31 1
3 3

⋅ − ⋅ +
=

− +
=

= = =

 

 
Step #2: Assume true for n k= . 

 
2 2 2 2 2 (2 1)(2 1)1 3 5 7  . . . (2 1)

3
k k kk − +

+ + + + + − =  

 
Step #3: Show true for 1n k= + . 

 
2 2 2 2 2 2 ( 1)(2( 1) 1)(2( 1) 1)1 3 5 7  . . . (2 1) (2( 1) 1)

3
k k kk k + + − + +

+ + + + + − + + − =

 
   

Step #4: Simplify the right side of the equation. 
 

( 1)(2( 1) 1)(2( 1) 1) ( 1)(2 1)(2 3)
3 3

k k k k k k+ + − + + + + +
=  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Step #5: Substitute the right side of Step #2 into Step #3, and then use algebra to show 
that the left side equals the simplified expression in Step #4. 

 
2 2 2 2 2 2

(2 1)(2 1)
3

2

2

3 2

3 2

( 1)(2 1)(2 3)1 3 5 7  . . . (2 1) (2 1)
3

( )(2 1)(2 1) ( 1)(2 1)(2 3)(2 1)
3 3

(4 1) 3(2 1)(2 1)
3 3

4 12 12 3
3 3

4 12 11 3
3

k k k

k k kk k

k k k k k kk

k k k k

k k k k

k k k

− +

+ + +
+ + + + + − + + =

− + + + +
+ + =

− + +
+ =

− + +
+ =

+ + +
=

 

 
Step #6: Multiply the right side fully (recall techniques from algebra). 

 
2( 1)(2 1)(2 3) ( 1)(4 8 3)

3 3
k k k k k k+ + + + + +

=  

 
Expand the numerator. 

 
2

3 24 8 3      4 12 11 3
          1
k k k k k

k
+ + = + + +

× +
 

 
and 

 
3 2 3 24 12 11 3 4 12 11 3

3 3
k k k k k k+ + + + + +

= ⇒  Verified 

 
 
 
 
 
 
 
 
 
 



The Binomial Theorem 
 
Recall from algebra that a binomial is an expression of the form:  
 

( )na b+  where   &  ,  n a b∈ ∈  
 

In algebra you learned to expand binomials when 2,  3,  4n =  or maybe 5n = , such as: 
 

3

2 2

3 2 2 3

( ) ( )( )( )

            ( )( 2 )

            3 3

x y x y x y x y

x y x xy y

x x y xy y

+ = + + +

= + + +

= + + +

 

 
However, expanding a binomial for large values of n would be quite time consuming. 
Fortunately, there is a theorem and a device that gives a pattern for expanding binomials for any 
value of n . The theorem is called the Binomial Theorem and the device applied to this theorem 
is called Pascal’s Triangle.    
 
Binomial Theorem: Let ( )na b+ be a binomial where   &  ,  n a b∈ ∈ ; then, the " "thk  term 
of the binomial expansion is given by; 
 

1 2 2 3 3 4 4( 1) ( 1)( 2) ( 1)( 2)( 3)( )  . . . 
1 2 1 2 3 1 2 3 4

n n n n n n nn n n n n n n n na b a na b a b a b a b b− − − −− − − − − −
+ = + + + + + +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 
Notice in this expression that the exponent on a decreases while the exponent on b increases by 
one for each new term. 
 
The Binomial Theorem has many applications including the study of Probability where it is 
used to find such things as the probability of choosing three red marbles in succession from a bag 
filled with 20 red and 40 blue marbles. Connected to the Binomial Theorem is the famous 
“Pascal’s Triangle”, which is given below and can be used to find the coefficients of a binomial 
expansion. 
 

0

1

2

3

4

5

( )                          1

( )                      1      1

( )                  1     2      1

( )              1     3      3      1

( )          1     4      6      4     1

( )   

x y

x y

x y

x y

x y

x y

+ =

+ =

+ =

+ =

+ =

+ =
6

     1    5    10    10     5     1

( )     1   6    15    20    15    6     1x y+ =

 

 



Notice how the numbers in the row above determines the numbers in each row of the triangle. 
For example the number "2" in row #3 is the sum of 1 1+  in row #2. The number "4" in row #5 
is the sum of 1 3+  or 3 1+  in row #4 and so on. These numbers give the coefficients of an 
expanded binomial as the following examples show. 
 

Example #1: Use Pascal’s Triangle to expand the following binomial. 
 

4( )x y+  
 

Step #1: From Pascal’s Triangle, 4n = , the exponent, corresponds to the numbers 
found in row five. These numbers are;  1  4  6  4  1 . 
 
Step #2: Apply these numbers as the coefficients of the terms of the expanded 
polynomial. Also note that according to the binomial theorem that the exponent on 
x will decrease and the exponent on y will increase. 

 
4 4 3 2 2 3 4( ) 4 6 4x y x x y x y xy y+ = + + + +  

 
Example #2: Use Pascal’s Triangle to expand the following binomial. 

 
7(5 6 )x y+  

 
Step #1: Expand Pascal’s Triangle to the 8th row. 

 
Row #6:           1    5    10   10   5   1
Row #7:         1   6   15   20   15   6  1
Row #8:       1  7   21   35   35  21  7  1

 

 
Step #2: Use row #8 as the coefficients for the expansion of the binomial and apply 
descending exponents on the entire first term, "5 "x , and increasing (or ascending) 
exponents on the entire 2nd term, "6 "y as follows. 

 
7 7 6 5 2 4 3 3 4

2 5 6 7

(5 6 ) (5 ) 7 (5 ) (6 ) 21 (5 ) (6 ) 35 (5 ) (6 ) 35 (5 ) (6 )

       21 (5 ) (6 ) 7 (5 )(6 ) (6 )

x y x x y x y x y x y

x y x y y

+ = + ⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ +
 

We will not apply the exponents to each term as it is obvious that very large numbers 
will result quite fast. For example the second to last term in the answer if expanded 
will be: 6 67 (5 )(6 ) 1632960x y xy⋅ = . 

 
 


