Equivalent Fractions and GCF

Fractions are used to represent parts of a whole. First, we'll examine how the whole number " 1 " may be expressed as a fraction.

Equivalent fractions represent the same fractional part. We'll use fraction bars to observe some equivalent fractions and how they look differently, but mean the same fractional part.

Reducing a fraction is finding an equivalent fraction in simplest form. A simplified fraction makes working with it easier.

Factors of a number are numbers multiplied together to get the number. One set of factors for six is 2×3. Another set of factors for six is 1×6. We will use factors to find greatest common factor (GCF).

Write fraction answers using the form in these examples.
Example 1: two-thirds is written as $2 / 3$.
Example 2: five and three fourths is written as 5 3/4.
Fraction Bars and Equivalence to One
Equivalent Fractions and Reducing Fractions
GCF (Listing Factors)

Fraction Bars and Equivalence to One

Look over these fraction strips. Each strip represents 1 whole.
$1=2$ halves, 3 thirds, 4 fourths, 5 fifths, 6 sixths, and so on.
Thus, $1=2 / 2=3 / 3=4 / 4=5 / 5=6 / 6$ and so on.. .

,												
$\frac{1}{2}$						$\frac{1}{2}$						
$\frac{1}{3}$				$\frac{1}{3}$					$\frac{1}{3}$			
	$\frac{1}{\square}$		$\frac{1}{4}$			$\frac{1}{4}$			\div			
	$\frac{1}{5}$			$\frac{1}{5}$			$\frac{1}{5}$			$\frac{1}{5}$		
		$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$		$\frac{1}{6}$		${ }^{\frac{1}{6}}$			$\frac{1}{6}$	$\frac{1}{6}$
$\frac{1}{8}$			$\frac{1}{8}$		$\frac{1}{8}$			7		$\frac{1}{8}$		
-	$\frac{1}{\square}$		$\frac{1}{9}$	$\frac{1}{8}$	$\frac{1}{4}$		$\frac{1}{\square}$		$\frac{1}{\square}$	$\frac{1}{9}$		
$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	\%	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$		$\frac{1}{10}$	$\frac{1}{10}$	tiv		$\frac{1}{10}$
$\frac{1}{12}$	- 1	$\frac{1}{2}$	家	$\frac{1}{2}$	$\frac{1}{2}$							

Equivalent Fractions and Reducing Fractions

Understanding Equivalent Fractions

Fractions that represent the same amount are called equivalent fractions.

Look at the fraction strips below which represent the quantity, $3 / 4$.

Another way to find equivalent fractions is by multiplying the numerator and denominator by the same number. (The numerator is the top number of a fraction. The denominator is the bottom number.)
$\frac{3}{4} \times \frac{2}{2}=\frac{6}{8}$ which can be thought of as $\frac{3 \times 2}{4 \times 2}=\frac{6}{8}$
This method is permitted because $2 / 2=1$ and when you multiply by 1 as a fraction you get the same number back with a different appearance.

The fraction strips above prove that $3 / 4=6 / 8$ because they represent the same amount.

Reducing Fractions

Reducing a fraction is finding an equivalent fraction that is in simplest form. Simplest form means that the only number that will divide into both the numerator and denominator is 1 .

Reduce $\frac{8}{12}$.
Divide both the numerator and denominator by the same number. $\frac{8}{12} \div \frac{4}{4}=\frac{2}{3}$.

GCF (Listing Factors)

The Greatest Common Factor (GCF) of two numbers is the largest factor that is the same when all the factors in a number have been listed. Follow the steps in this example to find the GCF.

Find the GCF of 18 and 24.

List all of the factors of $\mathbf{1 8}$.

\[\)| 1 | $\times 18$ |
| ---: | ---: |
| 2 | \times |
| 3 | 9 |

\]

Write the factors in order from
least to greatest.
$\{1,2,3,6,9,18\}$

List all of the factors of 24.

$$
\begin{aligned}
& 1 \times 24 \\
& 2 \times 12 \\
& 3 \times 8 \\
& 4 \times 8
\end{aligned}
$$

Write the factors in order from least to greatest.
$\{1,2,3,4,6,8,12,24\}$

To find the GCF, look for the largest factor that is the same in both lists.
$\{1,2,3,6,9,18\}$
$\{1,2,3,4,6,8,12,24\}$
The GCF is 6 .

You may use the GCF to reduce fractions.

Reduce $\frac{18}{24}$ to simplest form.

The GCF is 6.

$$
\frac{18}{7 \Delta} \div \frac{6}{6}=\frac{3}{4}
$$

