
TRIGONOMETRY AND THE COMPLEX PLANE 
 

In previous units, complex numbers were introduced and explored, and the “ArcTangent” 
was used to find to rotation angles when two complex numbers were multiplied. The 
complex plane and trigonometry are intricately related and have many applications in 
modern technology. Computer circuitry and electronics are highly dependent on the 
interconnections between trigonometry and complex numbers. In the branch of 
mathematics known as “Analytic Number Theory”, complex numbers, trigonometry, and  
logarithms may hold the key to discerning a pattern for the distribution of prime numbers. 
Since high-level security systems depend on the prime factors of composite integers, a 
method for deciding the distribution of prime numbers would be an invaluable tool for 
government and private use. In this unit we will explore the relationships between 
trigonometry and complex numbers, develop methods for converting complex numbers to 
trigonometric form (and vice versa), and we will find roots of complex numbers using 
trigonometric techniques. 
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Trigonometry on the Complex Plane 
 

In previous units, the six trigonometric ratios were defined by examining the ratios 
between the legs and the hypotenuse of a right triangle. We examined various graphing 
techniques for characteristic curves of trigonometric ratios. The coordinates of the points 
of these characteristic curves were found by inscribing a right triangle inside the unit 
circle on the -planexy . We established and used trigonometric and coordinate identities in 
translating polar and rectangular coordinates. Until now our studies of these 
trigonometric relationships occurred primarily on the real number -planexy . We now 
extend our knowledge of right triangle trigonometry to the complex plane. 
 
Recall that the standard form of a complex number is a bi+ . Also recall that a complex 
number can be located on the complex plane by allowing a  to represent the horizontal or 
x  component while bi  represents the vertical or y  component. Once the complex 
number’s location is found on the plane, we then complete a right triangle by drawing the 
number’s vector from the origin. The following diagram displays this process: 
 
 

Graph:  4 7i+   3 2i−   4 5i− +  
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If we account for the acute angles of each triangle whose vertex is at the origin, we can 
evaluate trigonometric ratios for every complex number. In the diagram below, we will 
develop a complex number’s coordinate identity. Although only a triangle shown in 
Quadrant #1 is labeled, the derived identity is valid for any value of [0,2 ]θ π∈ . 
 
 
 

 
 
From this diagram we have: 
 

cos x
v

θ =   sin y
v

θ =  

⇒  
 

cosv xθ =   sinv yθ =  
 

cos sin ( )x yi v v iθ θ⇒ + = +  
 

 
 
which is the coordinate identity for any complex number. 
 
*Note: In math it is common practice to designate a complex number by a small case 
letter" "z , such as let 4 7z i= − . 

 
 
 
 
 
 
 
 

cosx v θ=  

xθ  

siny v φ=  
v  

( )x yi+  

yi  

(cos sin )x yi v iθ θ+ = +  



 
 
Example #1: Convert the complex number 3 5i+  to polar (trigonometric) form. 
 

Step #1: Find v . (Recall that v  is the magnitude of the vector of the 
complex number). Since this quantity represents the hypotenuse of a right 
triangle on the complex plane, we use the Pythagorean Theorem to find this 
quantity. 

 
 
 
 
 
 
 
 
 
 
 
 

2 2 23 5v = +  
 

2
34v =  

 
34v =  

 
Step #2: For the complex number 3 5i+  

 
3x =   5yi i=  

   
Using the complex coordinate identity found above we have 

 
 3 34 cosθ=   5 34 sini i θ=  
 

Therefore: 34 cos 34 siniθ θ+ is the polar form of the complex number 
3 5i+  for appropriate values of θ . 

 
 

 
 
 
 
 

3 

5i  
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Example #2: Find the complex polar coordinates of 2 3i− +  and establish values 
for θ , where [0,2 ]θ π∈ : Set your calculator to degree mode. 
 

Step #1: Find v  and translate components to complex polar identity. 
 
  2 2 2( 2) 3v = − +  
 

  
2

13v =  
 
  13v =  
 

2 13 cosθ⇒ − =   and  3 13 sini i θ=  
 

Therefore: 2 3 13 cos 13 sini iθ θ− + = +  
 

 
Step #2: Find appropriate values of θ . 

 

2 13 cosθ− =  ⇒  2cos
13

θ −
=  

 
   and 
 

  1 2cos
13

θ − −⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
which can be found using your calculator as 124θ ≈ ° . 
 
   also 
 

 33 13 sin sin
13

i i θ θ= ⇒ =  

 
   and 
 

  1 3sin
13

θ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

  56θ ≈ °  

 
 
 



Step #3: Choose the appropriate value for θ  and write 2 3i− +  in complete 
complex polar form. 

 
If graphed 2 3i− +  is plotted in #2Q of the complex plane. For 124θ = °  or 
56° , only 124θ = °  is a #2Q  value; therefore, choose 124θ = ° . 

 
Hence:  2 3 13(cos124 sin124 )i i− + = °+ °  

 
 

Example #3: Convert: 3(cos 210 sin 210 )z i= °+ °  to rectangular complex form. 
 

Solution: 7210
6
π

° =  ⇒  7 73 cos sin
6 6

z iπ π⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 

     3 13
2 2

z i
⎛ ⎞− −

= +⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

     3 3
2 2

iz −
= −  

 
 

Example #4: Convert 2 cos sin
18 18

z iπ π⎛ ⎞= +⎜ ⎟
⎝ ⎠

 to rectangular complex form. 

 
 Solution: Set calculator to radian mode and evaluate: 
 

   cos 0.985
18
π

≈  

 

   sin 0.174
18
π

≈  

 
  ⇒  2(0.985 0.174 )z i= +   
 
  ⇒  1.970 0.347z i= +  
 
 

 
 
 
 
 
 



Complex Powers and DeMoivre’s Theorem 
 
In a previous unit, complex numbers such as 7 3i+  and 4 2i−  were multiplied according 
to the common process, “FOIL”. 
 

2(4 2 )(7 3 ) 28 12 14 6i i i i i− + = + − −  
 

   =   28 2 6i− +  
 

   =   34 2i−  
 
This process can also be used to multiply complex numbers written in polar form; but, the 
process consumes time and space.  
 
If, for instance, you are asked to  
 

multiply 2 cos sin
6 6

z iπ π⎛ ⎞= +⎜ ⎟
⎝ ⎠

 by itself 6 times  

 
or in other words  
 

find 
6

6 2 cos sin
6 6

z iπ π⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
, the process would extend to several pages. 

 
 
Fortunately a process for multiplying complex polar coordinates was proved by Abraham 
DeMoivre in 1730. DeMoivre’s proof greatly simplifies the process for raising a complex 
Polar Number to a power or for finding “ pn ” complex roots of a complex number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



DeMoivre’s Theorem 
 
Let (cos sin )z v iθ θ= +  be a complex polar number.  
 
Then ( ) (cos( ) sin( )) :n nz v n i n nθ θ= + ∈  

 
The proof of this theorem, though not difficult, is beyond the current topic and the 
student may wish to research the process on his/her own.  
 

Example #1: Find 4(3 4 )i+  in rectangular form: 
 

Step #1: Convert 3 4i+  to polar form 
 

   
2 2 23 4 25v = + =  

 
   5v⇒ =  
 
 
   3 5cosθ=    4 5 sini i θ=  
 

   3 cos
5

θ=    4 sin
5

θ=  

 

   1 3cos
5

θ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

   1 4sin
5

θ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
     53θ ≈ °  
 

(Note: By this time the student should recognize when the calculator should be in 
either degree or radian mode). 

 
 Therefore: 3 4 5(cos53 sin 53)i i+ = +  
 

Step #2: Substitute values into Demoivre’s Theorem 
 
 For 4(3 4 ) : 4i n+ =  

 
( ) (cos( ) sin( )) :n nz v n i n nθ θ⇒ = + ∈  

 
 ⇒    4 45 (cos(4 53 ) sin(4 53 ))z i= × ° + × °  
 
  4 625(cos(212 ) sin(212 ))z i= +  



 
       625( 0.848 0.530 )i≈ − −  
 
       530 331i≈ − −  
 
 

Example #2: Find 
6

6 5 53 cos sin
18 18

z iπ π⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

 
For this problem, the polar form of the complex number is given. Therefore we 
identify: 
 

6n = and use DeMoivre’s Theorem. 
 

6 6 5 5( 3) cos 6 sin 6
18 18

z iπ π⎛ ⎞⎛ ⎞ ⎛ ⎞= × + ×⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
6 5 527 cos sin

3 3
z iπ π⎛ ⎞= +⎜ ⎟

⎝ ⎠
 

 

6 1 327
2 2

z i
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
6 27 27 3

2 2
z i= −  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Finding Complex Roots of Complex Numbers 
 

A variation on DeMoivre’s Theorem allows us to evaluate such expressions as: 
 

1
4 4(2 7 ) (2 7 )i i− = −  

 
The formula that results from this variation is: 
 

2 2cos sinn
k

k kz v i
n n n n
θ π θ π⎡ ⎤⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 where 0,1,2,3....    :    2k n= ≥  

 
Although this formula looks intimidating, its application is not too difficult. 
 
 
 Example #1: Find the complex fourth root of : 4 4 3z i= −  
 

 Step #1: Convert z  to polar form: 
 
   2 24 (4 3)v = +  
 
   

2
16 48v = +  

 
   

2
64v =  

 
   64 8v = =  
 
  4 8cosθ=    4 3 8sinθ− =  
 

  1 cos
2

θ=    3 sin
2

θ−
=  

 

  1 1cos
2

θ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

   1 3sin
2

θ − ⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

  
3
πθ =     4 5,

3 3
π πθ =  

 
 
 
 



If graphed 4 4 3i−  is plotted in #4Q of the complex plane.  

For 4 5, ,
3 3 3
π π πθ = , only 5

3
πθ =  is a #4Q  value; therefore, choose 5

3
πθ = . 

 

Therefore: 5 58 cos sin
3 3

z iπ π⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 
Step #2:  4n = : 0,1,2,3k =  ⇒  values for the first four roots of z  

 
0k⇒ =  

 
2 2cos sinn

k
k kz v i

n n n n
θ π θ π⎡ ⎤⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
1

44 5 2 0 5 2 0( ) 8 cos sin
12 4 12 4

z iπ π π π⎛ ⋅ ⋅ ⋅ ⋅ ⎞⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 

     4 5 58 cos sin
12 12

iπ π⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 
 
  1k⇒ =  
 

1
44 5 2 5 2( ) 8 cos sin

12 4 12 4
z iπ π π π⎛ ⎞⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

  4 11 118 cos sin
12 12

iπ π⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

     
 

 2k⇒ =  
 

1
44 5 4 5 4( ) 8 cos sin

12 4 12 4
z iπ π π π⎛ ⎞⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

   4 17 178 cos sin
12 12

iπ π⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 
  
 
 



 
3k⇒ =  

 
1

44 5 6 5 6( ) 8 cos sin
12 4 12 4

z iπ π π π⎛ ⎞⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

    

        4 23 238 cos sin
12 12

iπ π⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 
 

Example #2:  Find 
1
3(5 )i z− =  

 
Step #1: Convert to Polar form. 

 

   
2 2 25 ( 1) 26v = + − =  

 
   26v =  
 
   5 26 cosθ=    26 sini i θ− =  
 

   5 cos
26

θ=    1 sin
26

θ− =  

 

   1 5cos
26

θ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

  1 1sin
26

θ − ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

 
   11θ ≈ ° #1Q     11θ ≈ − ° ( #4Q ) 
 
 
   Therefore:  26(cos( 11 ) sin( 11 ))z i= − ° + − °   
 
 
  Step #2:  3n =  0,1, 2k = ⇒  values for the first three roots of z  
 

0k =  
 

1 1
3 3 11 2 0 11 2 0( 26) cos sin

3 3 3 3
z iπ π⎛ − ⋅ ⋅ − ⋅ ⋅ ⎞⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 



   6 11 1126 cos sin
3 3

i− ° − °⎛ ⎞+⎜ ⎟
⎝ ⎠

 

 
 

1k =  
 

1
63 11 360 11 360( 26) cos sin

3 3 3 3
z i⎛ − − ⎞⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

          6 349 34926 cos sin
3 3

i° °⎛ ⎞+⎜ ⎟
⎝ ⎠

 

 
  

2k =  
 

1
63 11 720 11 720( 26) cos sin

3 3 3 3
z i⎛ − − ⎞⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

           6 709 70926 cos sin
3 3

i
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table of Sines, Cosines, and Tangents 
 

Degrees Radians cos sin tan 

0 0 1 0 0 

30 
6
π

 
3

2  

1
2  

3
3  

45 
4
π

 
2

2  
2

2  
1 

60 
3
π  1

2
 3

2
 3  

90 
2
π

 
0 1 undefined 

120 
2
3
π  1

2
−  3

2
 3−  

135 
3
4
π  2

2
−  2

2
 1−  

150 
5
6
π  3

2
−  

1
2

 3
3

−  

180 π  1−  0 0 

210 
7
6
π  3

2
−  

1
2

−  3
3

 

225 
5
4
π  2

2
−  2

2
−  1 

240 
4
3
π  1

2
−  3

2
−  3  

270 
3
2
π  0 1−  undefined 

300 
5
3
π  1

2
 3

2
−  3−  

315 
7
4
π  2

2
 2

2
−  1−  

330 
11

6
π  3

2
 

1
2

−  3
3

−  

360 2π  1 0 0 

 
 


