De Moivre's formula

From Wikipedia, the free encyclopedia
De Moivre's formula, named after Abraham de Moivre, states that for any complex number (and, in particular, for any real number) x and any integer n,

$$
(\cos x+i \sin x)^{n}=\cos (n x)+i \sin (n x)
$$

The formula is important because it connects complex numbers (i stands for the imaginary unit) and trigonometry. The expression $" \cos x+i \sin x$ " is sometimes abbreviated to "cis x ".

By expanding the left hand side and then comparing the real and imaginary parts, it is possible to derive useful expressions for $\cos (n x)$ and $\sin (n x)$ in terms of $\cos (x)$ and $\sin (x)$. Furthermore, one can use this formula to find explicit expressions for the n-th roots of unity, that is, complex numbers z such that $z^{n}=1$.

Abraham de Moivre was a good friend of Newton; in 1698 he wrote that the formula had been known to Newton as early as 1676 . It can be easily derived from (but historically preceded) Euler's formula $e^{i x}=\cos x+i \sin x$ and the exponential law $\left(e^{i x}\right)^{n}=e^{i n x}$ (see exponential function).

De Moivre's formula is actually true in a more general setting than stated above: if z and w are complex numbers, then $(\cos z+i \sin z)^{w}$ is a multivalued function while $\cos (w z)+i \sin (w z)$ is not, and one can state that

$$
\cos (w z)+i \sin (w z) \text { is one value of }(\cos z+i \sin z)^{w}
$$

Applications

This formula can be used to find the $n^{\text {th }}$ roots of a complex number. If z is a complex number, written in polar form as

$$
z=A(\cos x+i \sin x)
$$

then

$$
z^{1 / n}=(A(\cos x+i \sin x))^{1 / n}=A^{1 / n}\left\{\cos \left(\frac{x+2 k \pi}{n}\right)+i \sin \left(\frac{x+2 k \pi}{n}\right)\right\}
$$

where k varies from 0 to $n-1$ to give the n roots of the complex number.

Proof by induction

We consider three cases.
For $n>0$, we proceed by mathematical induction. When $n=1$, the result is clearly true. For our hypothesis, we assume the result is true for some positive integer k. That is, we assume

$$
(\cos x+i \sin x)^{k}=\cos (k x)+i \sin (k x)
$$

Now, considering the case $n=k+1$:

$$
\begin{aligned}
& (\cos x+i \sin x)^{k+1} \\
& =(\cos x+i \sin x)^{k}(\cos x+i \sin x) \\
& =(\cos (k x)+i \sin (k x))(\cos x+i \sin x) \text { (by the induction hypothesis) } \\
& =\cos (k x) \cos x-\sin (k x) \sin x+i(\cos (k x) \sin x+\sin (k x) \cos x) \\
& =\cos (k+1) x+i \sin (k+1) x, \text { by using trigonometric identities }
\end{aligned}
$$

We deduce that the result is true for $n=k+1$ when it is true for $n=k$. By the Principle of Mathematical Induction it follows that the result is true for all positive integers n.

When $n=0$ the formula is true since $\cos (0 x)+i \sin (0 x)=1+i 0=1$, and (by convention) $z^{0}=1$.
When $n<0$, we consider a positive integer m such that $n=-m$. So

$$
\begin{aligned}
& (\cos x+i \sin x)^{n}=(\cos x+i \sin x)^{-m} \\
& =\frac{1}{(\cos x+i \sin x)^{m}}=\frac{1}{(\cos m x+i \sin m x)}, \text { from above } \\
& =\cos (m x)-i \sin (m x), \text { rationalizing the denominator } \\
& =\cos (-m x)+i \sin (-m x)=\cos (n x)+i \sin (n x)
\end{aligned}
$$

Hence, the theorem is true for all integral values of n. Q.E.D.

See also

- Euler's formula
- Root of unity

Retrieved from "http://en.wikipedia.org/wiki/De_Moivre\'s_formula"
Categories: Complex analysis | Mathematical theorems

- This page was last modified 12:15, 28 September 2006.
- All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.) Wikipedia ${ }^{\circledR}$ is a registered trademark of the Wikimedia Foundation, Inc.

