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In mathematics, the polar coordinate system is a two-
dimensional coordinate system in which points are given 
by an angle and a distance from a central point known as 
the pole (equivalent to the origin in the more familiar 
Cartesian coordinate system). The polar coordinate 
system is used in many fields, including mathematics, 
physics, engineering, navigation and robotics. It is 
especially useful in situations where the relationship 
between two points is most easily expressed in terms of 
angles and distance; in the Cartesian coordinate system, 
such a relationship can only be found through 
trigonometric formulae. For many types of curves, a 
polar equation is the simplest means of representation; 
for some others, it is the only such means. 

History 
See also History of trigonometric functions  

It is known that the Greeks used the concepts of angle and radius. The astronomer Hipparchus (190-120 BC) 
tabulated a table of chord functions giving the length of the chord for each angle, and there are references to his 
using polar coordinates in establishing stellar positions.[1] In On Spirals, Archimedes describes his famous spiral, 
a function whose radius depends on the angle. The Greek work, however, did not extend to a full coordinate 
system. 

There are various accounts of who first introduced polar coordinates as part of a formal coordinate system. The 
full history of the subject is described in Harvard professor Julian Lowell Coolidge's Origin of Polar Coordinates.
[2][3] Grégoire de Saint-Vincent and Bonaventura Cavalieri independently introduced the concepts at about the 
same time. Saint-Vincent wrote about them privately in 1625 and published in 1647, while Cavalieri published in 
1635 with a corrected version appearing in 1653. Cavalieri first utilized polar coordinates to solve a problem 
relating to the area within an Archimedean spiral. Blaise Pascal subsequently used polar coordinates to calculate 
the length of parabolic arcs. 

In Method of Fluxions (written 1671, published 1736), Sir Isaac Newton was the first to look upon polar 
coordinates as a method of locating any point in the plane. Newton examined the transformations between polar 
coordinates and nine other coordinate systems. In Acta eruditorum (1691), Jacob Bernoulli used a system with a 
point on a line, called the pole and polar axis respectively. Coordinates were specified by the distance from the 
pole and the angle from the polar axis. Bernoulli's work extended to finding the radius of curvature of curves 
expressed in these coordinates. 

The actual term polar coordinates has been attributed to Gregorio Fontana and was used by 18th century Italian 
writers. The term appeared in English in George Peacock's 1816 translation of Lacroix's Differential and Integral 
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Calculus.[4][5][6] 

Alexis Clairaut and Leonhard Euler are credited with extending the concept of polar coordinates to three 
dimensions. 

Plotting points with polar coordinates 
As with all two-dimensional coordinate systems, there 
are two polar coordinates: r (the radial coordinate) and θ 
(the angular coordinate, polar angle, or azimuth angle, 
sometimes represented as φ or t). The r coordinate 
represents the radial distance from the pole, and the θ 
coordinate represents the anticlockwise 
(counterclockwise) angle from the 0° ray (sometimes 
called the polar axis), known as the positive x-axis on the 
Cartesian coordinate plane.[7] 

For example, the polar coordinates (3,60°) would be 
plotted as a point 3 units from the pole on the 60° ray. 
The coordinates (−3,240°) would also be plotted at this 
point because a negative radial distance is measured as a 
positive distance on the opposite ray 
(240° − 180° = 60°). 

One important aspect of the polar coordinate system not 
present in the Cartesian coordinate system is the ability to express a single point with an infinite number of 
different coordinates. In general, the point (r, θ) can be represented as (r, θ ± n×360°) or (−r, θ ± (2n + 1)180°), 
where n is any integer.[8] If the r coordinate of a point is 0, then regardless of the θ coordinate, the point will be 
located at the pole. 

Use of radian measure 

Angles in polar notation are generally expressed in either degrees or radians, using the conversion 2π rad = 360°. 
The choice depends largely on the context. Navigation applications use degree measure, while some physics 
applications (specifically rotational mechanics) use radian measure, based on the ratio of the radius of the circle to 
its circumference.[9] 

Converting between polar and Cartesian coordinates 

The two polar coordinates r and θ can be converted to Cartesian coordinates by 

 
 

  

From those two formulas, conversion formulas in terms of x and y are derived, including 

 

 

 
 

The points (3,60°) and (4,210°) 



[10]If x = 0, then if y is positive θ = 90° (π/2 radians) and if y is negative θ = 270° (3π/2 radians).
 

Polar equations 
The equation of a curve expressed in polar coordinates is known as a polar equation, and is usually written with r 
as a function of θ. 

Polar equations may exhibit different forms of symmetry. If r(−θ) = r(θ) then the curve will be symmetrical about 
the horizontal (0°/180°) ray; if r(π−θ) = r(θ) then it will be symmetric about the vertical (90°/270°); if r(θ−α) = r
(θ) then it will be rotationally symmetric α° counterclockwise about the pole.[10] 

Circle 

The general equation for any circle with a center at (r0, φ) and radius a is
 

 
 

This can be simplified in various ways, to conform to more specific cases, 
such as the equation 

 
 

for a circle with a center at the pole and radius a.[11]
 

Line 

Radial lines (those which run through the pole) are represented by the equation 

, 
 

where φ is the angle of elevation of the line; that is φ = arctan m with m the slope of the line in the Cartesian 
coordinate system. 

Any line which does not run through the pole is perpendicular to some radial line.[12] The line which crosses the 
line θ = φ perpendicularly at the point (r0, φ) has equation 

. 
 

Polar Rose 

A polar rose is a famous mathematical curve which looks like a petalled 
flower, and which can only be expressed as a polar equation. It is given by 
the equations 

 OR 
 

  

A circle with equation r(θ) = 1. 



If k is an integer, these equations will produce a k-petalled rose if k is odd, or 
a 2k-petalled rose if k is even. If k is not an integer, a disc is formed, as the 
number of petals is also not an integer. Note that with these equations it is 
impossible to make a rose with 2 more than a multiple of 4 (2, 6, 10, etc.) 
petals. The variable a represents the length of the petals of the rose. 

Archimedean spiral 

The Archimedean spiral is a famous spiral that was discovered by 
Archimedes, which also can be expressed only as a polar equation. It is 
represented by the equation: 

. 
 

Changing the parameter a will turn the spiral, while b controls the distance 
between the arms, which is always constant.. The Archimedean spiral has two 
arms, one for θ > 0 and one for θ < 0. The two arms are smoothly connected 
at the pole. Taking the mirror image of one arm across the 90°/270° line will 
yield the other arm. 

Conic sections 

A Conic section with one 
focus on the orgin, and the other somewhere on the 0° ray (i.e. 
the major axis lies along the polar axis) is given by: 

 

 

where e is the eccentricity and l is the semi-latus rectum, the 
perpendicular distance at a focus from the major axis to the 
curve. If e > 1 it defines a hyperbola; if e = 1 it defines a 

parabola; and if e < 1 this equation defines an ellipse. The special case e = 0 of the latter results in a circle of 
radius l. 

Other curves 

Because of the circular nature of the polar coordinate system, it is much simpler to describe many curves with an 
equation in polar rather than Cartesian form. Among these curves are lemniscates, limaçons, and cardioids. 

A polar rose with equation r
(θ) = 2 sin 4θ. 

One arm of an Archimedean 
spiral with equation r(θ) = θ for 

0 < θ < 6π. 

Ellipse, showing semi-latus rectum 



Complex numbers 
Complex numbers, written in rectangular form as a + bi, can also be expressed in polar form in two different 
ways: 

1. , abbreviated  
 

2.   

which are equivalent as per Euler's formula.[13] To convert between rectangular and polar complex numbers, the 
following conversion formulas are used: 

 
 

  
and therefore   

For the operations of multiplication, division, exponentiation, and finding roots of complex numbers, it is much 
easier to use polar complex numbers than rectangular complex numbers. In abbreviated form: 

Multiplication:  
 

Division:  
 

Exponentiation (De Moivre's formula):   

Vector calculus 
Calculus can be applied to equations expressed in polar coordinates. Let  be the position vector 

, with r and θ depending on time t,  be a unit vector in the direction  and  be a unit 
vector at right angles to . The first and second derivatives of position are 

. 

 

 
 

Let  be the area swept out by a line joining the focus to a point on the curve. In the limit  is half the area 
of the parallelogram formed by  and , 

, 
 

and the total area will be the integral of  with respect to time.
 

Applications 

Kepler's laws of planetary motion 



Further information: Kepler's laws of planetary motion  

Polar coordinates provide a natural means of expressing Kepler's laws of planetary motion. Kepler's first law 
states that the orbit of a planet around a star forms an ellipse with one focus at the center of mass of the system. 
The equation given above for conic sections may be used to represent this ellipse. 

Kepler's second law, the law of equal areas, states that a line joining a planet and its star sweeps out equal areas 

during equal intervals of time, that is,  is constant. These equations can be derived from Newton's laws of 

motion. A full derivation using polar coordinates is discussed in Kepler's laws of planetary motion. 

Three dimensions 
The polar coordinate system is extended into three dimensions with two different coordinate systems, the 
cylindrical and spherical coordinate systems. 

Cylindrical coordinates 

The cylindrical coordinate system is a coordinate system that 
essentially extends the two-dimensional polar coordinate system 
by adding a third coordinate measuring the height of a point 
above the plane, similar to the way in which the Cartesian 
coordinate system is extended into three dimensions. The third 
coordinate is usually denoted h, making the three cylindrical 
coordinates (r, θ, h). 

The three cylindrical coordinates can be converted to Cartesian 
coordinates by 

 
 

  
  

Spherical coordinates 

Polar coordinates can also be extended into three dimensions 
using the coordinates (ρ, φ, θ), where ρ is the distance from the 
pole, φ is the angle from the z-axis (called the colatitude or zenith and measured from 0 to 180°) and θ is the angle 
from the x-axis (as in the polar coordinates). This coordinate system, called the spherical coordinate system, is 
similar to the latitude and longitude system used for Earth, with the latitude being the complement of φ, 
determined by δ = 90° − φ, and the longitude being measured by l = θ − 180°. [14] 

The three spherical coordinates are converted to Cartesian coordinates by 

 
 

  
  

See also 

2 points plotted with cylindrical coordinates 
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List of canonical coordinate transformations  
Point plotting  
Point (geometry)  
Line (mathematics)  
Plane (mathematics)  

Other coordinate systems 

Coordinates (mathematics)  
Coordinate systems  
Cylindrical coordinate system  
Curvilinear coordinates  
Orthogonal coordinates  
Elliptic coordinates  
Hyperbolic coordinates  
Stereographic projection  
Parallel coordinates  
Geocentric coordinates  
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