Cardioid

From Wikipedia, the free encyclopedia

In geometry, the cardioid, literally heart shape, is an epicycloid which has one and only one cusp. That is, a cardioid is a curve that can be produced as a locus - by tracing the path of a chosen point of a circle which rolls without slipping around another circle which is fixed but which has the same radius as the rolling circle.

The cardioid is also a special type of limaçon: it is the limaçon with one cusp. (The cusp is formed when the ratio of a to b in the equation is equal to one.)

The name comes from the heart shape of the curve (Greek kardioeides = kardia:heart + eidos:shape). Compared to the heart symbol $(\boldsymbol{\nabla})$, though, a cardioid does not come to a sharp point. It is rather shaped more like the outline of the cross section of a plum.

The cardioid is an inverse transform of a parabola.
The large, central, black figure in a Mandelbrot set is a cardioid. This cardioid is surrounded by a fractal arrangement of circles.

Contents

- 1 Equations
- 2 Graphs
- 3 Area
- 4 See also
- 5 References

Equations

Since the cardioid is an epicycloid with one cusp, its parametric equations are

$$
\begin{aligned}
& x(\theta)=\cos \theta+\frac{1}{2} \cos 2 \theta, \\
& y(\theta)=\sin \theta+\frac{1}{2} \sin 2 \theta .
\end{aligned}
$$

The same shape can be defined in polar coordinates by the equation

$$
\rho(\theta)=1+\cos \theta
$$

For a proof, see cardioid proofs.

Graphs

Four graphs of cardioids oriented in the four cardinal directions, with their respective polar equations.

Area

The area of a cardioid which is congruent to

$$
\rho(\theta)=a(1-\cos \theta)
$$

is

$$
A=\frac{3}{2} \pi a^{2} .
$$

See proof.

See also

- Wittgenstein's rod
- microphone\#Directionality

References

- Hearty Munching on Cardioids (http://www.cut-the-knot.org/ctk/Cardi.shtml) at cut-the-knot
- Xah Lee, Cardioid (http://www.xahlee.org/SpecialPlaneCurves_dir/Cardioid_dir/cardioid.html) (1998) (This site provides a number of alternative constructions).
- Jan Wassenaar, Cardioid (http://www.2dcurves.com/roulette/rouletteca.html), (2005) in 862 twodimensional mathematical curves.

Retrieved from "http://en.wikipedia.org/wiki/Cardioid"
Category: Curves

- This page was last modified 20:39, 21 October 2006.
- All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.) Wikipedia ${ }^{\circledR}$ is a registered trademark of the Wikimedia Foundation, Inc.

