
REVIEW OF CONIC SECTIONS 
 

This unit is a review of the conic sections and their equations. You will also review the 
distance formula and the midpoint formula. 
 

Conic Sections 
 

Distance Formula and Midpoint Formula 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Conic Sections 
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Equations of Conic Sections 
 
A general equation for all conic sections is shown below.   
 

2 2 0Ax Bxy Cy Dx Ey F+ + + + + =  
 
If A = C, then the equation is a circle. 
 
If A and C are different signs, then it is a hyperbola. 
 
If A and C have the same sign, then it is an ellipse. 
 
If A or C = 0 or (if there is only one squared term), then it is a parabola. 
 
*Notice that A is the coefficient of 2x  and C is the coefficient of 2y . 
 
 
 
 
 



Identify each of the following. 
 

Example #1: 
 

 2 22 2x y− = −  Set the equation = to 0 and compare A and C. 
 

 2 2 4 0x y+ − =  Since A = 1 and C = 1 and they are equal, this is a circle. 
 
 
Example #2:   
 

 2 3 46r s− =  Set the equation = to 0 and compare A and C. 
 
 2 3 46 0r s− − =  Since C is equal to 0, this is a parabola. 
 
 
Example #3:  
  

 2 24 5 2x y− = +  Set the equation = to 0 and compare A and C. 
 
 2 24 7 0x y− − =  Since A = 4 and C = –1 and they have different signs, this 

is a hyperbola. 
 
 
Example #4: 

  
 2 22 3 6 5x y− = −  Set the equation = to 0 and compare A and C. 

 
 2 22 5 9 0x y+ − =  Since A = 2 and C = 5 and they have the same sign, this is 

an ellipse. 
 

 
 
 
 
 
 
 
 
 
 
 



Distance Formula and Midpoint Formula 
 
The distance between two points on a coordinate plane A( 1 1,x y ) and B( 2 2,x y ) is given 
by the following formula: 
 

2 2
2 1 2 1( ) ( )d x x y y= − + −  

 
The midpoint of a line segment with endpoints A( 1 1,x y ) and B( 2 2,x y ) can be found by 
using the following formula: 
 

M = 1 2 1 2,
2 2

x x y y+ +⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Example #1:  Given the points (–2, 5) and (4, –1), find the distance between the 
points. 
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The distance between points (–2, 5) and (4, –1) is 6 2 . 
 
Example #2:  Given the points (–2, 5) and (4, –1), find the midpoint of the line 
segment. 
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The midpoint of the line segment between points (–2, 5) and (4, –1) is (1,2). 
 
 



Example #3:  Find the center, circumference, and area of the circle whose 
diameter has the endpoints P(–3, 6) and Q(7, –4).  
 
The center is the midpoint of the diameter. 
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Find the length of the radius of the circle.  This length is the distance between the 
center and either of the endpoints of the diameter. 
 
We’ll use the (2,1) M and ( 3,6)P − to find the length of the radius. 
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Next find the circumference and area of the circle. 
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The center of the circle whose diameter has the endpoints P(–3, 6) and Q(7, –4) is 
point (2,1)M ; and the circle has a circumference of  10 2π and an area of50π  . 
 
 
 
 
 
 



Example #4:  Write the equation of a circle whose center is at (5, –2) and whose 
radius is 3. 
 
The equation of a circle is given by 2 2 2( ) ( )x h y k r− + − = , so you want to 
replace the h and k with the given center and the r with 3. 

 
2 2 2

2 2

( 5) ( ( 2)) 3

( 5) ( 2) 9 -This is the equation of the circle.

x y

x y

− + − − =

− + + =
 

 
 
Example #5:  Write the equation of a parabola that has a focus at (–1, 3) and a 
directrix of x = 4. 
 
By the definition of a parabola, the distance between some point (x, y) and the 
focus is equal to the distance between the same point (x, y) and the directrix. 
 
 

 
 
  
 
 
 
 
 
 
 

      d between (x, y) and (–1, 3)  =  d between (x, y) and (4, y) 
 

 2 2 2 2( ( 1)) ( 3) ( 4) ( )x y x y y− − + − = − + −  
 

 2 2 2( 1) ( 3) ( 4) 0x y x+ + − = − +    -square both sides 
 

2 2 2( 1) ( 3) ( 4)x y x+ + − = −  -expand the quantities 
containing the variable x 

 
2 2 22 1 ( 3) 8 16x x y x x+ + + − = − +  -solve for x 

 
215 ( 3) 10y x− + − = −  -divide both sides by –10 

 

( 1,3)−

( , )x y

4x =

(4, )y



23 1 ( 3)
2 10

y x− − =  -rearrange the terms 

so it is in the form 
2( )x a y k h= − +  

21 3( 3)
10 2

x y−
= − +  -standard form of the 

parabola 
 

 
 

Example #6:  Write the equation of an ellipse with 1F (4, 0) and 2F (–4, 0) and a 
constant 10. 

 
By the definition of an ellipse, the distance from some point P(x, y) and two fixed 
points 1F  and 2F  is a constant sum. 
 

 
 
 

 
 distance between      +    distance between = 10 
 (x, y) and (4, 0)    (x, y) and (–4, 0)  
 

 2 2 2 2( 4) ( 0) ( 4) ( 0) 10x y x y− + − + + + − =  -isolate one radical 
 

 
2 2

2 2 2 2( 4) 10 ( 4)x y x y⎡ ⎤ ⎡ ⎤− + = − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
  -square both sides 

 

 2 2 2 2 2 2( 4) 100 20 ( 4) ( 4)x y x y x y− + = − + + + + +  
 

 22 2 22 28 10016 1620 ( 4) 8x xx xy xy y− = − + + +++ +++  
 

 2 216 100 20 ( 4)x x y− − = − + +    -divide both sides by 4 
 

( , )P x y

2 ( 4,0)F − ( 4,0)−

1(4,0)F

2 1 10PF PF+ =



 [ ]
22 2 24 25 5 ( 4)x x y⎡ ⎤− − = − + +⎢ ⎥⎣ ⎦
   -square both sides 

 
 2 2( 4 25)( 4 25) 25( 8 16 )x x x x y− − − − = + + +    
 
 2 2 216 200 625 25 200 400 25x x x x y+ + = + + +  -put this in standard form 
 
 2 2225 9 25x y= +  
 

2 2
1

25 9
x y

= +  -standard form of the ellipse 

 
 

Example #7:  Write the equation of a hyperbola with 1F (0, 2 5 ) and 2F (0, 

2 5− ) and a  constant difference of 4. 
 
By the definition of a hyperbola the distances from some point P(x, y) and two 
fixed points 1F  and 2F  is a constant difference. 

 
 distance between   –    distance between      = 4 
 (x, y) and ( 0, 2 5 )         (x, y) and (0 2 5− ) 
 

 
2 2 2 2( 0) ( 2 5) ( 0) ( 2 5) 4x y x y− + + − − + − =  -isolate a radical 

 
2 2 2 2( 2 5) 4 ( 2 5)x y x y+ + = + + −  -square both sides 

 
2 2 2 2 2 24 5 20 16 8 ( 2 5) 4 5 20x y y x y x y y+ + + = + + − + + − +  

 
2 28 5 16 8 ( 2 5)y x y− = + −  -÷  both sides by 8 

 
2 25 2 ( 2 5)y x y− = + −  -square both sides 

 

 2 2( 5 2)( 5 2) ( 2 5)y y x y− − = + −  
 
 2 2 25 4 5 4 4 5 20y y x y y− + = + − +  
 

2 24 16y x− =  -divide by 16 
 



2 2
1

4 16
y x

− =  -standard form of the hyperbola 

 
  


