TRIGONOMETRIC IDENTITIES
In this unit you will look closely at trigonometry ratios and identities. You will begin

with examining the usefulness of trigonometry using a graphing calculator. You will
then look at the development and derivations of trigonometric identities. In the final part

of the unit, you will verify trigonometric identities.

Introduction to Trigonometric Ratios and Identities
Development and Derivations of Trigonometric Identities
List of Fundamental Trigonometric Identities

Verification of Trigonometric Identities



Introduction to Trigonometric Ratios and ldentities

Trigonometry is a useful tool in that the trigonometric functions can be used to describe
many assorted real-world situations that have a tendency to repeat or are “periodic”.
However, trigonometric equations that describe these situations can easily become quite
complicated and involved. Consider the following expression and graph the equation on
your calculator.

Y, = 25in X C0S X + COS X

Now enter Y, =sin(2x) + cos x and press your left arrow to the far left of the editor.

Press [ENTER]to thicken the graphed line before graphing. Graph the 2" equation after
thickening the line.

You will notice that both equations graph the same curve, but the equation entered into
Y, can be considered a simpler form of the two equations because it involves entering

less terms. If we set Y;=Y,and subtract cos x from both sides, we obtain the following:

25IN X COS X + C0S X = Sin(2X) + oS X
2sin X €os X = sin(2x)

The last line in this equation represents a statement of a “Trigonometric Identity”.
Because the two sides of the equation are equal, the right side of the equation may be
substituted for any expression that involves the left side to simplify the expression, such
as in the following:
_sin(2x) _ 2sin xcos X
COS X COS X

=2sin X

with a suitable restriction on cos x = 0 which would result in division by zero in the
original problem.



In this unit we will develop a general understanding of how trigonometric identities are
developed and perform exercises that utilize these identities to simplify complex
trigonometric expressions. Before beginning, it is important to make two observations on
the previous example.

sin 2x

COS X
of this expression must account for the restriction that cos x = 0. Although the
expression eventually simplified to y = 2sin X, which, as we have previously learned,
is the characteristic curve for the sin x with an amplitude (A= 2), the original

1.) Since the original equation stated that y = , all subsequent simplifications

. . /4 3
expression takes precedence. Since cos x =0 when x = 5 and > these values must

be excluded from the domain of the simplified expression, y = 2sin x. This is
important to note because both forms of the expression can be entered and graphed on
the calculator, but the calculator will not indicate any difference between the two
curves at these restricted values. To see this for yourself, enter the two equations into

and graph each separately.

Y, = 2sinx
Y2 :SinZX

COS X

*Be sure to turn off Y, before viewing Y, by moving the cursor left to highlight the
equals sign, and then press enter.

sin 2x
COS X

clearly involves division by zero, and

Although both graphs are identical, Y, =

therefore, there should be a hole in the graph at x = % 3?ﬂsuch as:

Ny

We will return to this concept in a later unit when we solve trigonometric equations
for a variable. For this unit we will only mention these restrictions when significant to
the problem.



2.) The second item to note and emphasize is that 2sin x = sin (2x).

Recall from a previous unit that the standard equation of a trigonometric function is
f (x) = Asin(Bx+C) where A= amplitude and B= frequency of the curve. It is important

to note the distinction between the two values so that the following type of incorrect
simplification does not occur as we proceed through the unit:

2sin x

Simplify: y=—
sin 2x

A.) CORRECT simplification:

2sin x 2sin x 1
- = — = =Sec X
SIN2X  2SINXCOSX  COSX

B.) INCORRECT simplification:

2sinx _ 2sinx

- = — =1
sin2x  2sinXx

or also INCORRECT:

2sinx  2sinXx 2

sin2x sinxsinx  sinXx

As we proceed through this unit, remember that for situations such as 2sin x: A= 2, F=1
and that for sin 2x: A= 1, F= 2 which are not equal.



Development of Trigonometric Identities

Because trigonometric identities allow for the simplification of complex expressions and
also because there are literally hundreds of these identities, it is instructive to gain an
intuitive understanding of how these identities are derived from the six(6) basic ratio
relationships and the use of inscribed triangles on the unit circle.

Recall from a previous unit that we defined the six(6) ratios in the following manner:

sinezE csc0:E
c b
c C
Cosf =— secd =— b
a
b a |—
tang = — cotd == 0
a b a

As noted, the reciprocals of the first three ratios, sin@, cosé, tan@, define the remaining
three ratioscscé, secé, cot@ . From this reciprocal relationship, we obtain the first three
in our list of trigonometric identities which can be used for simplification purposes.

sinezi: cosfd =——-: tan<9:L

To understand the development of the remaining identities, it is instructive to return to
the graph of the unit circle with inscribed triangles. (Note: Although we view only
quadrant #l, the results obtained are valid for any triangle in any quadrant.)

-\(a’ b)




Because the trigonometric ratios uniquely define a relationship between angles and sides
in any right triangle, we will allow ¢ = r to represent any length of the hypotenuse of a
right triangle or any radius of the unit circle.

From the definitions of our six(6) ratios, we also know that:

sinezl cosez5

r r
Multiply each side by “r” and we obtain our next identity:
y=rsing X =1rCcosé
These are called the “coordinate identities” and are used in graphing points in Polar

Coordinates which we will examine in a later unit. For now, we mention that in our
previous graph, the point (a, b) now becomes:

(@, b) = (rcosé,rsing)

For the next identity, we use our coordinate identities and recall the Pythagorean
Theorem.

a®+b?=c? which for our diagram becomes; X2 +y?=r?
By substitution:

(rcos6)? +(rsin @) =r?

r?cos? @ +r2sin? 9 =r2 (Note: sin@-sin@=sin?6 is common
notation as opposed to sin @-sin @ = sin 6?)

Dividing by r?, the next trigonometric identity is:

sin?@+cos? =1



For the next identity, we return to our six(6) fundamental ratios. Recall:

tanG:E, sinH:E, cosezg:
a c c

now E_EZE.E:E:tanQ
Cc ¢ ca a
b
and £:S|n6
a coséd
c
Therefore:
M:tane & C?—Sezcow
coséd sin@

For the last derivation, we use the first six identities and find:

11
csc’ @ sec’ @

sin0+cos’9=1 =

The common denominator of the right side = csc? @sec? @, forming the single
fraction:

sec? 0 +csc? 0
csc? @sec? 6

Cross multiply and obtain:

sec? @ +csc® @ =csc? Osec’ 9

Through repeated similar operations on the above identities, other fundamental
trigonometric identities can be established which, when combined with those already
obtained, yields even more results, and so on.



List of Fundamental Trigonometric ldentities

For this unit, the following list of common identities will be used to verify other identities
and evaluate certain results.

I.) Single Angle Identities:

sinH:L cosezL tanH:L
csco secd cotd
tanﬁzﬂ cotH:C_o—SH
cosd sin@

sin®@+cos’ =1

= 1-sin’ @ =cos’ 6 1+tan®* @ =sec’ @

—1-co0s’ @ =sin’@ 1+cot?*d =csc’f

sin(-¢) = —sin @

sin@ = cos(90—0) & cos(—6) =cosd
tan(-0) =—tand

I11.) Sum and Difference ldentities:

sin(a = f) =sina cos S+ cosasin tan  + tan
(@£ p) B : .ﬂ & tan(a+p)= 1< an f8
cos(a + ) =cosa cos fFsinasin S l¥tanatan g




Verification of Trigonometric Identities
Example #1: Verify the following Identity: sin&(cot &+ tan ) =secé

To verify an identity, it is important that only one side of the equation be
manipulated. Either the left side must be transformed into the right side or the
right side transformed into the left side. Cross multiplication is NOT allowed in
verification problems, BUT can be used to establish a new identity.

tan@:ﬂ

Step #1: Use: cos¢ = sin e(cf)—seJrﬂ) =secd
cotd = cosd sing cosd

sin@

Step #2: Distribute:

=12
sin“ &

cos@ + =secd
cosé

Step #3: Common Denominator of left side = cos &

cos’d sin’é cos? @ +sin’ @
=secld —»> ————=s3ecd
cos@ cosé cosd

Step #4: Use: sin?@+cos? 6 =1

2 02
w =secld — i =secd (Verified)
cos & cosé



cos? @
1+sin@

=sind

Example #2: Verify the following identity: 1—

Step #1: Use: cos? @ =1-sin’ @

1 1-sin% @

- : =sin@
1+sin@

Step #2: Factor1—sin’ @ as difference of squares and cancel:

=sind = 1-1+4sin@=sind

1_(1—sin0)(W)
14sim0

sind=sin@ (Verified)



sin@-cosé@ tan @

Example #3: Verify the following identity: =
P fy 9 y cos’@—sin?@ 1-tan’o

Step #1: Use: tan @ = siné
cosé

sing

sindcos®  cos@
cos2 @ —sin26 L sin2 @
cos2 @

sin% 6
cos? @

Step #2: Common denominator of 1— is cos’ 6

Therefore:

sin@
singcosd cos O
cos?@-sin?@ cos?@-sin? o

cos? 6

Step #3: Invert and multiply the right side, and then cancel:

sin@ cos’0  sindcosd
cosé cos?O—sin’0 cos?H—sin’ o

(Verified)



1 1

Example #4: Verify the following identity: —+ -
1-sin@ 1+sind

Step #1: The common denominator of the left =
(1-sin@)(1+sin §) = (L—sin? 8) = cos® &

Therefore: 1+3|2n0+1—5|2n0 =2sec? 6
cos‘ 6 cos“ @

&

1+sin@+1-sing 2

_ =— =2sec’ 0
cos- ¢ cos- ¢

2sec’@=2sec’d  (Verified)

Example #5: Verify the following Identity: sin (%+ 6’] =C0s ¢
Step #1: Use: sin(a + f) =sinacos S +cosasin S

sin £+9 =sin zc036?+cos£sin6? =cosd
2 2 2

Step #2: We know singzl : cos% =0
Therefore: 1-cos6 + Q-siMd =cosd

cosd =cos@  (Verified)

=2sec’ 0



sin(a + f)

Example #6: Verify the following Identity:
COS COS 3

=tana +tan g

Step #1: Use: sin(a + f) =sina cos f+cosasin S

sinacos f+cosasin S
COS COS f3

=tana +tan g

Step #2: Separate into two fractions and cancel:

sina cos N cosasinff _ sina N sin j
CoSaxCOSf# COSaCOSf COSa COSp

=tana +tan g

Step #3: Use: tané = sing
cosd
sina sin g3 e
+ =tana +tan S (Verified)

CoSa cosf



cotacot f—-1

Example #7: Verify the following identity: cot(a+ f) =
cot f+cota

Step #1: Use: coté = 1 on the left side:
tan @

1

cot(a+ p) = m

tana +tan g

Step#2: Use tan(a+f)=————
P @+ ) 1-tanatan g

1 1 _l-tanatan g

tan(e+ ) tana+tanf  tang+tan B
1-tanatan g

1

- cotacot g
1 1

cota cotp

Step #4: Find the common denominator of the numerator and denominator of
the main fraction.

Step #3: Use tan @ = o again —
cotd

1- 1 cotacot -1
cotacot _ cotacot _ cotacotS-1 cotereot B
1 1 cotf+cota co B cotf+cota

cota cotp cotacot B

_cotacotf—-1

(Verified)
cot S+ cota



J6-+2

Example #8: Verify cos75° = 2 is the exact value.

c0s 75° = cos(30° + 45°) = cos (% + %j
Use: cos(a+ f) =cosacos f—sinasin f

T T T T . T . T
COS| —+— [=C0S—CO0S——sin—sin—
6 4 6 4

Example #9: Find sin105°

sin105° = sin(60+ 45) = sin (%+%j

. T T . T T . T T
SIn| —+— [=SIN—CO0S—+SIN—CO0S —
(3 4) 34 43

342 V21

= .
2 2 2 2




Example #10: Find tan15°

tan15° = tan(45-30) = tan (% — %)

tan” —tan 1—£ 3-43 73
tan(f_fj_ 4 _~ 3 __3 _.3-N8_3
4 6 1ianZtan” 11\/§ 3+43 3 3+43
3
Multiply by conjugate: _ 3-3 _ (3-/3)(3-+/3) B 9-643+3

343 @+ \yE-v3) 93
12—66\/5 23

(Verified)



Example #11: Find sec(195°)

Step #1: Use: secd = L
cosé

1 1
cos(195)  cos(45+150)

Therefore: sec(195) =

Step #2: Use cos(a + ) =cosacos f—sinasin

cos(45+150) = cos(%Jr%”j = cos%cosS—ﬂ—sin zsinS—”

_V2(=3) V2 1
"2l 2 ) 22
_ 62

4
Step #3: Find reciprocal of result in Step #2.

1
2
4

_ 4 (J6-2)
V6+42 (6-+2)

_4J2-4J6 _4(2-6) -G
6-2 4

(Verified)



