Practice 3: Solve each of the following solution stoichiometry problems:

1. If 25.0 mL of 0.350 M NaOH are added to a copper (II) sulfate solution, how many grams of copper (II) hydroxide will precipitate?

2 NaOH (aq) + CuSO₄ (aq)
$$\rightarrow$$
 Cu(OH)₂ (s) + Na₂SO₄ (aq)

2. How many mL of 0.715 M HCl is required to completely react with 1.25 grams of sodium carbonate?

$$2\;HCI\;(aq)\;\;+\;\;Na_2CO_3\,(s)\;\;\rightarrow\;\;2\;NaCI\;(aq)\;\;+\;\;H_2O\;(I)\;\;+\;\;CO_2\,(g)$$

3. How many mL of 0.280 M barium nitrate are required to completely react with 25.0 mL of 0.350 M aluminum sulfate?

$$3 \text{ Ba}(NO_3)_2 \text{ (aq)} + Al_2(SO_4)_3 \text{ (aq)} \rightarrow 3 \text{ BaSO}_4(s) + 2 \text{ Al}(NO_3)_3 \text{ (aq)}$$

Answers:

1. Start with given substance:	Convert the volume to moles, using the molarity as a conversion factor:	Relate moles of reactant to product with coefficients:	Convert the moles to volume, using concentration:	To calculate the volume of solution required!
25.0 mL	0.350 mol NaOH 1000 mL	1 mol Cu(OH) ₂ 2 mol NaOH	97.56 g Cu(OH) ₂ 1 mol Cu(OH) ₂	= 0.427 g Cu(OH) ₂
2. Start with given substance:	Convert the mass to moles, using the molar mass as a conversion factor:	Relate moles of reactants to each other with coefficients:	Convert the moles to volume, using concentration:	To calculate the volume of solution required!
1.25 g Na₂CO₃	1 mol Na ₂ CO ₃ 105.99 g Na ₂ CO ₃	2 mol HCl 1 mol Na ₂ CO ₃	1000 mL 0.715 mol HCl	= 33.0 mL
3. Start with given substance:	Convert the volume to moles, using the molarity as a conversion factor:	Relate moles of reactants to each other with coefficients:	Convert the moles to volume, using concentration:	To calculate the volume of solution required!
25.0 mL	0.35 mol Al ₂ (SO ₄) ₃ 1000 mL	3 mol Ba(NO ₃) ₂ 1 mol Al ₂ (SO ₄) ₃	0.280 mol Ba(NO ₃) ₂	= 93.75 mL