Practice 1: Determine the mass of solute that would be required to make each of the following solutions:

- 1. 40 mL of 0.7 M KBr
- 2. 300 mL of 2.5 M HCl
- 3. 70 mL of 0.5 M BaS

Answers:

1. 40 mL of 0.7 M KBr.

Start with the volume of solution:	First, use molarity as a conversion factor to convert to moles:	Then, use molar mass as a conversion factor to convert to mass:	To find the mass of solute required!
40 mL	0.7 mol KBr	119.002 g KBr	= 3.33 g KBr
	1000 mL	mol KBr	

2. 300 mL of 2.5 M HCl.

Start with the volume of solution:	First, use molarity as a conversion factor to convert to moles:	Then, use molar mass as a conversion factor to convert to mass:	To find the mass of solute required!
300 mL	2.5 mol HCl	36.458 g HCI	= 27.3 g HCl
	1000 mL	mol HCl	

3. 70 mL of 0.5 M BaS.

Start with the volume of solution:	First, use molarity as a conversion factor to convert to moles:	Then, use molar mass as a conversion factor to convert to mass:	To find the mass of solute required!
70 mL	0.5 mol BaS	169.39 g BaS	= 5.93 g BaS
	1000 mL	mol BaS	