
POLYNOMIALS 
 
Polynomial functions are important in real-world situations. For example a polynomial 
function can model the relationship between the dimensions of a rectangular box and its 
volume. Polynomial functions can also model the volume of irregularly shaped buildings. 
In this lesson you will identify, evaluate, add, subtract, and classify polynomials. 
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Evaluating Polynomial Functions 
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Products and Factors of Polynomials 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction to Polynomial Functions 
 
monomial: a numeral, a variable, or a product of a numeral and one or more variables. 
 

Examples:  5,  x,  –3xy 
 
constant: a monomial with no variable, basically any number that has a constant value. 
 

Examples:  6,  –9 
 
coefficient: the numerical factor of a monomial. 
 

Examples:  in 3xy the coefficient is 3, in 
6
x   (also written as 1

6
x ) the coefficient is 1

6
 

 
degree of a monomial: the sum of the exponents of the variables. 
 

Example:  the monomial 2 2 1 1(also written as )x yz x y z  has a degree of 4  
 
polynomial: a monomial or a sum of terms that are monomials (there can not be any 
variable exponents or any variables in the denominator of a term). 
 
Binomials and trinomials are polynomials used frequently in algebra. 
 

binomial: a polynomial with two terms. 
 

Example:  3x + 5 
 

trinomial: a polynomial with three terms. 
 

Example:  24 6 8x x− + −  
 
degree of a polynomial: the largest monomial degree of the polynomial. 
 

Example:  4 3 29 3 4 1x x x x+ + − +  has a degree of 4 because the highest  exponent is 4. 
 

 
Example #1:  Evaluate the polynomial for x = 3.  

  
2

2

7 11

( 3) 7( 3) 11 Replace  with ( 3) and simplify.
9 21 11
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x x

x

− − +

− − − − + −
− + +

   

   
  

 

The polynomial evaluates to 23 when x = 3. 



Evaluating Polynomial Functions 
 
To evaluate a polynomial function for a specific value of x, replace all x variables with 
the value given. 

 
Example #1: Evaluate  3 22 4 6 for 2.x x x x− + − = −   
 

 

3 2( 2) 2( 2) 4( 2) 6 replace all 's with 2

( 8) 2(4) 4( 2) 6 simplify

8 8 8 6

30

x− − − + − − −

− − + − −

− − − −

−

  

          
The value of 3 22 4 6 for 2 is 30.x x x x− + − = − −   
 
    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Adding and Subtracting Polynomials 
 
To add or subtract polynomials combine like terms; this means add or subtract the 
coefficients of any terms that have the same variable and the same exponent. Make sure 
the like terms are rewritten next to each other; this will make it easier to add or subtract.  
 
When subtracting polynomials, make sure to change all the signs of the second 
quantity before you rewrite the problem. 
 

Example #1:   2 323 4 1( ) ( 3 3 )6 3 0 5x xx xx+ − +−− +  
 

3 3 2 22 15 33 4 06 x x xx x + − − +−+    arrange the terms in 
descending powers 

 3 28 2 3 6x x x− − +    collect like terms 
 
 Example #2:   2 3 2(5 6 11) ( 8 2)x x x x− − − − + +  
 
   2 3 25 6 11 8 2x x x x+ −− −−   *notice that all the signs have  
        changed on the second quantity. 
   3 2 28 5 6 11 2x x x x+ − − − −    
 
   3 28 4 6 13x x x+ − −  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Products and Factors of Polynomials 
 
To write a function in standard form means to multiply all terms together and write them 
in descending order (largest to smallest). 
 
 Example #1:   ( ) ( 1)( 4)( 3)f x x x x= − + −  
 
   2( ) ( 3 4)( 3)f x x x x= + − −    FOIL the first two quantities 
 

2( ) ( 3) 3 ( 3) 4( 3)f x x x x x x= − + − − −  use the distributive 
        property to multiply 
 

3 2 2( ) 3 3 9 4 12f x x x x x x= − + − − +   combine like terms 
         

3( ) 13 12f x x x= − +   
 
Factoring Polynomials 
 
Just as a quadratic expression is factored by writing it as a product of two factors, a 
polynomial expression of a degree greater than 2 is factored by writing it as a product of 
more than two factors. 
 

Example #2:  3 210 16x x x− +  factor out the GCF of x 
 
   2( 10 16)x x x− +  factor the trinomial into binomials 
 
 ( 8)( 2)x x x− −  

 
Example #3:   3 26 5 50x x x+ − −  this polynomial can be factored in pairs 

    
 3 2( 6 ) ( 5 30)x x x+ + − −   group the terms in pairs 
 
 2 6( ) )65(xx x−+ +  factor out the GCF of each pair to 
 produce a quantity that is common 
 

 2( 6)( 5)x x+ −   factor ( 6)x +  from each term 
 
 
 
 
 
 
 



 
 
 
 
 
 

Example #4:  Factor 3 27x + . 
 

2( 3)( 3 9)x x x+ − +  

The x in the first quantity comes from 3 3x . 
 
The 3 in the first quantity comes from 3 27 . 
 
The 2x  in the second quantity comes from squaring x in the first quantity. 
 
The 3x in the second quantity comes from multiplying both terms in the 
first quantity. 
 
The 9 in the second quantity comes from squaring the 3 in the first 
quantity. 
 
The signs for the sum of cubes will always be (+, – +). 
 

Example #5:  Factor 3 125x − . 
 

2( 5)( 5 25)x x x− + +  
 

The signs for the difference of cubes will always be (–, + +). 

Factoring the Sum and Difference of Cubes 
  

3 3 2 2( )( )a b a b a ab b+ = + − +    3 3 2 2( )( )a b a b a ab b− = − + +  


