
TWO SPECIAL FUNCTIONS 
 
Implied in our discussion of functions is the concept that a function may be continuous or 
discontinuous throughout its domain. Recall that in this function, f(x) = 1/(x+2), a gap in the 
graph occurred at x = –2. This restriction in the function’s domain was due to the fact division by 
zero is undefined mathematically. In essence, the laws of mathematics mandated this restriction. 
However, natural restrictions on the domain and/or range are only one type of mathematical 
function. If we intentionally restrict these values (or alternately expand them); we can create new 
functions and therefore new applications to various problem situations. In this unit we will 
examine special functions whereby restrictions on their domains and ranges lead to many real-
world applications. These functions are called: 
 

Piecewise Functions 
 

Step Functions 
 

Piecewise Function (Reference) 
 

Floor [Greatest Integer] and Ceiling Functions (Reference) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Piecewise Functions 
 

Example #1: Graph ( ) 2 1f x x= −  for ( ,  2]  [2,  )fD = −∞ − ∞∪ . 
 

Normally ( ) 2 1f x x= − is a linear function that is graphed over ( ,  )fD = −∞ ∞ . For this 
example we have restricted the domain to exclude all x -values from ( 2,2)− . We can 
view this new function on the graphing calculator. 

 
Step #1: Press Y= and type in the following: 1Y (2X 1)= − . Be sure that the quantity 
(2X 1)− is in ( ) ’s. 
 
Step #2: With your cursor at the end of the last ” ) ”, type in (X 2  or  X 2)≤ − ≥ .* 

 
*To find the inequality symbols, type 2nd MATH .  
*To find the “or” command, type 2nd MATH , then right arrow to the 'LOGIC'  
menu. 
 

1"Y " should now display: = 1Y (2X 1)= − (X 2  or  X 2)≤ − ≥  
 

Step #3: Press GRAPH  or ZOOM  6. 
 

 

 
 

The function is now graphed as two separate lines. 
  
This simple example illustrates the concept that, ‘a function is entirely determined 
by its domain and range values’ and new functions can be ‘created’ by restricting 
(or expanding) these values. These ‘created’ functions are called “Piecewise 
Functions”. 
 

Sample Applications of Piecewise Functions 
 

In order that we may understand the importance of piecewise functions and their 
applications consider the following problem: 
 



Sample #1: An airplane leaves Cleveland in route to Chicago. The plane accelerates for 
20 minutes until it reaches a cruising speed of 450 mph and travels at this speed for 45 
minutes. As the plane approaches Chicago, it begins to slow and then lands 15 minutes 
later. Describe the plane’s flight graphically. 
 
The plane’s flight is described in three stages: 
 

(1) The plane takes off and accelerates for 20 minutes. 
(2) The plane travels at a constant rate for 45 minutes. 
(3) The plane slows and comes to a stop 15 minutes later. 

 
Each part of the plane’s flight describes a separate ‘piece’ of its behavior. When the flight 
is graphed, there should be three distinct sections of the graph to view and interpret. 
 
In the problem we identify two variables in the plane’s flight:  the plane’s velocity ( )v  
and the amount of time the plane travels at that velocity ( )t . These two variables can be 
used to replace the -x  and - axesy on the xy - plane in the following manner: 

 
  

 
 
 
 
 
 
 
 
 
 
 
 

*For our graph the -axisx  represents time ( t ) and the -axisy is labeled in functional 
notation for velocity ( ( )v t ). 

 
From your science classes you may recall that an object’s velocity is defined to be the 

distance traveled for a given amount of time or dv
t

= . You will also recall that an 

object’s acceleration is defined to be the change in velocity over a given period of time or 
va
t

= . In both formulas, the object’s velocity and acceleration depend on time.  

 
In math we say that velocity and acceleration are both ‘functions’ of time. Both can be 
expressed in functional notation as: 
 

( )v t  

t  



Velocity: ( ) dv t
t

=   Acceleration: ( ) va t
t

=  

 
With our graph appropriately labeled we can describe the plane’s flight accordingly. (We 
will assume that the plane travels uniformly in all three situations with no delays, wind 
interference, waiting to taxi, etc.). 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
For this graph we make note of the following: 

 
(1)  The total amount of time the plane spends traveling is 85 minutes.  
(2)  The plane obtains a maximum speed of 450 mph, 20 minutes into the   flight, 

and maintains this speed for the next 45 minutes. 
(3)  Sixty-five minutes after the plane takes off, it begins to slow for 15 minutes 

until it comes to rest in Chicago. 
 

Each section of the graph is a line segment. We can find the equations of these lines 
which we can use to discern more information about the plane’s flight. 
 
In order to find a mathematical representation for each ‘piece’ of the plane’s flight we 
need to recall our linear equation formulas. 
 

Slope Formula: 2 1

2 1

y ym
x x

−
=

−
 

 
Point –Slope Formula: 1 1( )y y m x x− = −  
 
For our investigation we will transform the above formulas to represent the variables on 
our graph. Substituting t - values for x and ( )v t - values for y we obtain the following: 
  

( 80, 0 

( 65, 450 ) ( 20,450 ) 

( 0, 0 ) 

450 
mph 

15 min    45 min 20 min 

( )v t  

t  



Slope Formula: 2 1

2 1

y ym
x x

−
=

−
, ⇒ 2 1

2 1

( ) ( )v t v ta
t t
−

=
−

 

 
Point –Slope Formula: 1 1( )y y m x x− = − , ⇒ 1 1( ) ( ) ( )v t v t a t t− = −  

 
We can use these formulas to find equations for each section of the graph. First we will 
establish domain and range values for each piece since this is a restricted function. 
 

For piece #1: [0, 20];   [0,  450]v vD R= =  
For piece #2: [20,65];   [450]v vD R= =  
(note: the range for piece #2 has constant value). 
For piece #3: [65,80];   [450,0]v vD R= =  

  
Next we will use the endpoints of each piece to develop mathematical equations for each 
piece using our modified linear equations. 
 

For piece #1: 450 0 22.5 
20 0

a −
= =

−
and ( ) 0  22.5( 0)v t t− = −  ( ) 2 . 2 5 v t t=⇒  

 

For piece #2: 450 450 0 
65 20

a −
= =

−
and ( ) 450v t =  

 

For piece #3: 0 450 30
80 65

a −
= = −

−
 and ( ) 0 30( 80)v t t− = − −  ⇒ ( ) 30 2400 v t t= − +  

 
We now have an equation that describes the plane’s flight for each part of its journey. 
Each piece depends on the amount of time that the plane’s flight followed that equation.  
 
In science we might say that the flight is described by the ‘parameter’ of time. In 
mathematics the time parameter translates to a restriction on each equation’s domain.  
 
We can write each equation and their domain restrictions as one ‘piecewise function’ in 
the following manner. 
 

22.5              for 0 20 [0, 20)

( ) 450               for 20 65 [20,65)

30 2400  for 65 80 [65,80]

t t

v t t

t t

≤ <⎧
⎪⎪= ≤ <⎨
⎪
− + ≤ ≤⎪⎩

 

 
The above description is the common form to represent a piecewise function. It is 
important to note a few of its features: 
 
The one sided ‘{’ indicates that a piecewise function is a combination of multiple sets. 



 
The use of the half-open interval around one point in one piece, and the closed interval 
notation in the next piece, is to indicate that one endpoint of an interval may not exist on 
two pieces of the function simultaneously. However where we place a ‘[’ or a ‘(’ may be 
completely arbitrary provided the selection is consistent. 
 
For example, the domain could have been stated as: 

 
0 20    [0,20]

20 65    (20,65)

65 80    [65,80]

t

t

t

≤ ≤

< <

≤ ≤

 

 
For piecewise functions that contains gaps, the selection of ‘[ ]’ or ‘( )’ may not be 
arbitrary. 
 
Using both inequalities and interval notation is not necessary. In this course both may be 
used. 

 
Example #2: Graph the above problem on the TI-83+  as a piecewise function. 

 
The graphing calculator will graph a set of “connected” piecewise functions as one graph 
according to the domain restrictions and using the symbols of inequality as outlined at the 
beginning of this unit. Follow similar procedures to these when you are asked to graph a 
piecewise function on the calculator. 

 
Step #1: Set the calculator’s window settings according to the domain and range 
values indicated above. 
 

 
Xmin 1;    Xmax 85
Ymin 1;    Ymax 510

= − =
= − =

 

 
Step #2: Type each piece into Y =  in ( ) ’s, followed by the restrictions. Your 
equations should look like the following.  
 
*Remember to use[ ][ ]2nd MATH  to access the inequality symbols and the “LOGIC” 
commands. 

 
1

2

3

Y (22.5X)(0 X  and  X 20)

Y (450)(20 X  and  X 65)

Y ( 30X 2400)(65 X  and  X 80)

= ≤ <

= ≤ <

= − + ≤ ≤

 

      



Step #3: Press GRAPH  
 

 
 

Another way to graph the above piecewise function is: 
 

Step #4: Press VARS ,Y-VARS, ENTER , to find the commands to be entered into 

4Y = .  Enter 1 2 3Y Y Y+ +  
  

Step #5: Turn the equals signs off by highlighting each one, then press ENTER . The 
following should be in Y = , then GRAPH .  (Did this work?). 
 

 
  

Example #3: Graph the following piecewise function.  
 

2

2

4  for  [ 5, 3]

( ) 3 7  for  (0,6]

2    for  [8,11)

x

f x x

x

⎧ − − −
⎪⎪= +⎨
⎪
⎪−⎩

 

 
Step #1: For each piece of this function, the endpoints of the intervals can provide us 
with an idea of the range of the function. This is useful so that we can scale our graph 
paper or calculator’s window settings accordingly.  

 



2Find ( 5) and ( 3) for ( ) 4
        ( 5) 21
        ( 3) 5

Find (0) and (6) for ( ) 3 7 
        (0) 7
        (6) 25

f f f x x
f
f

f f f x x
f
f

− − = −
− =
− =

= +
=
=

  

 
*Even though 0 x = is not on the domain of this piece, we still 
calculate (0) 7 f = to help scale the graph. 

 
2Find (8) and (11) for ( ) 2

        (8) 128
        (11) 242

f f f x x
f
f

= −
= −
= −

 

 
If we assume that each section of this function does not take on even more extreme 
values between the endpoints than the ones calculated, then we see that our graph is 
scaled over a wide range of values. (Calculating extreme values between endpoints is left 
for a later unit). 

 
To graph the function we set up the following axes: 
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The above graph represents a piecewise function with multiple gaps both vertically and 
horizontally. The first piece is a continuous section of a parabola on a closed interval. 
The second piece is the equation of a line on a half-open interval. The third section is also 
a section of a parabola on a half-open interval.  
 
This function could not be easily graphed on the calculator. First, the extreme window 
settings would cause the graph to be distorted. Secondly, the calculator may connect the 
graph to the x -axis at multiple points. And lastly, the calculator would not graph ‘half-
open’ intervals as open circles. 
 
If you would like to attempt this function on your calculator on your own, enter the 
following with appropriate window settings: 

 
2

1

2

2
3

Y (X 4)( 5 X  and  X 3)

Y (3X 7)(0 X  and  X 6)

Y ( 2X )(8 X  and  X 11)

= − − ≤ ≤ −

= + < ≤

= − ≤ <

 

  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Step Functions 
 
Consider the following situation: 
 
Jason and Diane Baker are newly married and are looking to buy a home in their town. Jason 
works downtown as a computer consultant. Diane works 17 miles from downtown as an 
architect. Jason and Diane can afford a home from between $130,000.00 to $150,000. Jason and 
Diane want to buy a house that is roughly equal driving distance for both and still affordable in 
their price range. As the Baker’s examine housing prices, they notice housing costs are a 
constant $65,000.00 from the center of town to one mile out of town. Between one and two 
miles, homes jump by $12,000.00 to $77,000.00. Between two and three miles, prices jump to 
$89,000.00. This $12,000.00 increase continues every mile from the center of town. What is the 
maximum distance that Jason and Diane will drive one way to work each day? 
 
One way to answer this problem is to plot housing costs increases from the center of town as a 
series of concentric circles with the radius of the innermost circle equal to one mile and each 
circle increasing in radius by one mile. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

$125 

$137 

$149 

$161 

$65 Th 

$77 thous. 

$89 thous. 

$101 

$113 

Housing costs increase $12,000.00 per 

Jason & 
Diane’s 



From this we see; if Jason and Diane live at the outermost edge of the 8 mile circle, then Jason 
will drive just under 8 miles to work and Diane will drive just over 9 miles –roughly equal 
driving for both. 
 
Another way to display this situation is to plot the graph on the -plane xy where the -axisx  
equals the distance from the center of town and the y-axis represents the housing costs at that 
distance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As you can see in the above graph, housing costs remain the same every mile but jump to the 
next level at the beginning of each new mile. If a person had $85,000.00 to spend on a home and 
wanted to live as far away from downtown as possible, then –as the graph indicates- he or she 
could live no more than 2 miles from the center of town. At less than 2 miles housing costs are 
constant at $77,000.00, then jump to $89,000.00 which is beyond an $85,000.00 price range. 
 

Ceiling Function 
 

Let ( )f x ∈ be a real-valued function. Also define ( ,  )a b  to be an open interval from 
a tob  where ( ,  )z a b∈  is the only integer value on the interval. Therefore a z b< < and 
all other numbers on ( ,  )a b have decimal value not equal to a whole number. 
Then ( )  f x x= is called, “The Ceiling Function” of x and is defined as a piecewise 
function of the following form: 
 

Town 1 mile    2 miles     3 miles       4 miles 5 miles     6 miles      7 miles       8 miles  9 miles 
Center  

$161 thous. 
 
$149 thous. 
 
$137 thous. 
 
$125 thous. 
 
 
$113 thous. 
 
$101 thous. 
 
$89  thous. 
 
$77  thous. 
 
$65  thous. 

The Baker’s Home 



,        if  
 ( )   

1,   if  
z a x z

f x x
z z x b

< ≤⎧
= = ⎨ + < <⎩

 

 
In order to see how this function operates, we choose ( )  f x x= under the following 
conditions: 
 
Let: 3.1,  4.9 ( , ) (3.1,4.9)a b a b= = ⇒ = and 4 (3.1,4.9)∈ . 
In a table of values select a few numbers from ( , ) (3.1,4.9) a b = and 4 (3.1,4.9)z = ∈  

 

X 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 

x  4 4 4 4 4 5 5 5 5 

 
As noted in the initial conditions for this problem, 4z = (the integer value on the 
interval (3.1,4.9) . From our piecewise description of this function, 4 will be the function 
value recorded in our table if we choose an x (a domain value) that is less than 4 . If we 
choose 4 , then the function value is still 4 . But if we select a domain value larger than 
4 , then our range jumps to 5 . This is illustrated on the following graph: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If we continue the above example into the next interval for ( , ) (4.1,5.9)a b = , then 
5z = and the function’s graph jumps to the next level and so on. 

 
A step function has many real world applications. Doctors use a chart of greatest integers to 
know how much prescription to give to their patients based on body weight. If a patient weighs 
145 lbs. then he/she might receive a dosage of 10 milligrams of a medicine because that patient 
falls between 140-150 lbs. However a patient who weighs 155 lbs. might receive 15 milligrams 
because that patient has ‘stepped up’ to the next 10 lb. weight category.  
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Y = f(x) = [[ x ]] 
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Floor Function (Greatest Integer Function)  

The floor function ( )f x x= , also called the greatest integer function, gives the largest 
integer value less than or equal to x.   

Graph the following Floor function over ( 2, 2.9)fD = − . 
 

( )f x x= : For this problem there are 5 z -values over  ( 2.9,2.9)− . They 

are:{ }2, 1,0,1, 2− − . If we separate the interval ( 2,2.9)− so that only one z -value is on an 
interval (or sub-interval) at a time, then we might examine ( 2, 2.9)fD = − separated in the 
following manner: 
 

First sub-interval: ( , ) ( 2, 1.1)a b = − −   1 2z = −  
Next sub-interval: ( , ) ( 1, 0.1)a b = − −     2 1z = −  
Next sub-interval: ( , ) (0,0.9)a b =    3 0z =  
Next sub-interval: ( , ) (1,1.9)a b =    4 1z =  
Final sub-interval: ( , ) (2, 2.9)a b =    5 2z =  

 
Tables of values for two of the subintervals are given below. The remaining sub-intervals 
can be calculated on your own. 

 
  Table for 2z = − : 
 

X –2 –1.9 –1.8 –1.6 –1.4 –1.3 –1.2 –1.1 

x  –2 –2 –2 –2 –2 –2 –2 –2 

 
  Table for 1z = : 
 

X 1.0 1.1 1.3 1.4 1.5 1.7 1.8 1.9 

x  1 1 1 1 1 1 1 1 

 
 
 
 
 
 
 
 
 



The resulting graph would appear as the following: 
 
 

 
 
 

Sample Problem 
 

( ) 2f x x= : Again, there are 5 z - values over  ( 2.9,2.9)− . They are:{ }2, 1,0,1, 2− − . 
We will again separate the interval ( 2,2.9)− so that only one z -value is on any sub-
interval at a time, then we see ( 2, 2.9)fD = − again separated in the following manner: 

 
First sub-interval: ( , ) ( 2, 1.1)a b = − −   1 2z = −  
Next sub-interval: ( , ) ( 1, 0.1)a b = − −     2 1z = −  
Next sub-interval: ( , ) (0,0.9)a b =    3 0z =  
Next sub-interval: ( , ) (1,1.9)a b =    4 1z =  
Final sub-interval: ( , ) (2,2.9)a b =    5 2z =  

 
Tables of values for the first two subintervals are given below. The remaining sub-
intervals can be calculated on your own. This time, however, after we evaluate x , we 

then multiply the result by 2. (Be sure to find x , then multiply. This proceeds just as 
‘order of operations’ would). 
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  Table for 2z = − : 
 

X –2 –1.9 –1.8 –1.6 –1.4 –1.3 –1.2 –1.1 

x  – 4 – 4 – 4 – 4 – 4 – 4 – 4 – 4 

 
  Table for 1z = − : 
 

X –1.0 –0.9 –0.7 –0.5 –0.4 –0.3 –0.2 –0.1 

x  –2 –2 –2 –2 –2 –2 –2 –2 

 
 

The resulting graph would appear as the following: Notice that every jump is twice as 
high as the previous graph. 
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