
THE INVERSE OF A FUNCTION 
 
In this unit we examine the concept of the Inverse of a Function, the meaning of a “One-to-One” 
function, and continue our analysis of these concepts on the graphing calculator. 
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The Inverse of a Function 
 
Recall that the composition of functions was defined as the following: 
Let ( ),  ( )f x g x ∈  be real-valued functions and denoted by ( ),  ( )f f x g g x= = , then the 
Composition of Functions is: ( ( )).f g f g x=  
 
For many applications the composition of functions is insignificant. However, when the 
composition results in a special situation, then we make particular note and define the situation 
accordingly: 
 

The Inverse of a Function: 
 

Let ( ), ( )f f x g g x= = ∈  be real-valued functions.  
If ( ( )) ( ( ))f g x g f x x= = , we say that f  and g  are Inverse Functions. 
The Inverse of a function f is denoted by: 1 1( ) ( )f f x g x− −= =  

 
Example #1: Determine if ( ) 4 and ( ) 4f x x g x x= + = −  are inverse functions. 
From the above definition it is necessary that f  and g satisfy two conditions: 

(1.) Find: ( ( )) ( 4) ( 4) 4f g x f x x x= − = − + =  
 
(2.) Find: ( ( )) ( 4) ( 4) 4g f x g x x x= + = + − =  
 
Therefore 1( ) 4    and     ( ) 4f x x f x x−= + = − . 
 

Example #2: Determine if 2( )     and    ( )f x x g x x= =  are inverse functions. 
(1.) Find: 2( ( )) ( ) ( )f g x f xx x= = =  
 
(2.) Find: 2( ( )) ( )  or g f x g x x x= = = −  

 
Since ( ( ))g f x returns two possible values, we cannot say that f and g  are inverses. 
Recall from the previous unit, however, that by restricting the domain and/or range of 
g we were able to analyze ( )g x as a restricted function. If we restrict one of these values, 
then we may also find that ( )g x is a restricted inverse of ( )f x . We will explore this 
possibility shortly. 

 
 
 
 
 
 
 
 



Graphical Representation of the Inverse 
 
In your previous math courses you may have learned that pairs of numbers such as 8  and  8,−  

21.3  and  21.3,−  and etc. are called “Additive Inverses” and that numbers such as 4 7 and ,
7 4

 

and 15 and ,
5
−

−  are called “Multiplicative Inverses”. The reason that these pairs of numbers are 

significant is that, when added or multiplied, the result is either "0"  (for the additive inverses) or 
"1"  (for the multiplicative inverses). 
 

( i.e. 8 8 0− + =  and 7 4 1
4 7
× = )  

 
Additive Inverse 
 
Graphically the additive inverses are illustrative of the significance of the inverse concept 
to mathematics. 

 
 
 
 
     
 
 
 

Both 2− and 2 are exactly 2 units (or the same distance) from zero on the number line. 
This is true of all sets of additive inverses. We therefore view the number line as being 
“symmetric” about 0 . 

 
Multiplicative Inverse 

 
For multiplication the inverses represent a different form of symmetry about the number 
one. From your study of Geometry you may recall the proportional value of the 
Geometric Mean. Recall that the following proportion defines the geometric mean: 

 
2  or  a b b ac

b c
= =  

 
For the number line the number,1, is the geometric mean between any two multiplicative 
inverses. 

( i.e. 2

4
4 77     

1
17

4

1 1
7 4

= ⇒ = × = )  
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Graphically the geometric mean is represented as: 
                  
 
 
      
        
 
 
 
 

Although each number’s distance from one is not equal, you will notice that their 
numerators are equal. This indicates that the multiplicative inverses are proportionally 
symmetric about the number one. (The graphical representation for negative 
multiplicative inverses is similar to that shown for positive inverses and can be 
investigated on your own). 
 

The key concept in the study of inverses is symmetry about a particular value. Since functions 
are relations between two sets and represented as ordered pairs, we need to find a value about 
which each point in the set is symmetrical. 
 

The Inverse of a Coordinate Point: 
 
Let ,  a b∈ and a b≤ and ( , )a b be an ordered pair on the xy -plane. Then the ordered 
pair ( , )b a is the inverse point of ( , )a b . 
 
Graphically (for illustrative purposes we will show a b≠ although by definition a b≤ ): 
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Note that points ( , )a a , and ( , )b b each define a square with 
 
(0,0) , ( ,0)a , and (0, )a as the three other vertices with ( , )a a  and  
 
(0,0) , ( ,0)b , and (0, )b as the three other vertices with ( , )b b .  
 
In addition the points 
 
( , )a a , ( , )a b , ( , )b b , and ( , )b a also define a square with ( , )a a , ( , )b b along one diagonal 
and ( , )a b , ( , )b a along the other diagonal.  
 
If we were to plot every point and its inverse on the xy -plane, we would find that an 
infinite number of such squares would be formed (for negative coordinates as well –
investigate this on your own).  
 
If we then connect all the diagonals of these squares, starting at vertex, (0,0) , we obtain a 
line whose equation is y x= or ( )f x x= , with ( , )  and  ( , )x yD R= −∞ ∞ = −∞ ∞ .  
 
Therefore we will say that the function is the “Line of Symmetry” for all points and their 
inverses on the xy -plane. 
 
Recall again our definition of the Inverse of a Function: 
 
“If ( ( )) ( ( ))f g x g f x x= = , we say that f  and g  are Inverse Functions”. 
We can now conclude that a function and its inverse are symmetrical about the line y x= . 
 
Note: In our previous graph we also observe that the points 
( , ), ( , ), ( , ),  and ( , )a a a b b b b a define a square with ( , )a a and ( , )b b forming one diagonal, 
and the inverse points ( , )a b and ( , )b a forming the other.  
 
Recall from geometry that a square is a rhombus, and that the diagonals of a rhombus are 
perpendicular ( )⊥ and bisect one another. Therefore the diagonal formed by 
connecting ( , )a b and ( , )b a is ⊥ to the line of symmetry, ( ) ,S x x=  and is bisected by this 
line. 
 

 
 
 
 
 
 
 
 
 



Finding the Inverse of a Function 
 
From our previous discussion on inverse points we notice that inverse points are found by 
interchanging ( , )a b with ( , )b a . This indicates that inverse functions could be found by 
interchanging every point ( , )x y on the function with the point ( , )y x . Algebraically this implies 
writing (or solving) a function in terms of its other variable. 
 

Example #1: Given ( ) 3 7f x x= + , find 1( )f x−  and graph both on the same coordinate 
axes. 

 
Step #1: Recall that ( )y f x= , so we can rewrite our function as:  3 7y x= + . 

 
Step #2: Solve for x : 

  
3 7

7 3

7
3

y x

y x

y x

= +

− =

−
=

 

 
Step #3: Interchange x and y : 

7 ( )
3

xy g x−
= =  

 
Step #4: Verify that 1( ) ( )g x f x−=  

 

(1.) Find: 7 7( ( )) 3 7 ( 7) 7
3 3

x xf g x f xx− −⎛ ⎞ ⎛ ⎞= = + = − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

(2.) Find: (3 7) 7 3( ( )) (3 7)
3 3

x xg f x g xx + −
= + = = =  

 

Therefore 1 7( ) 3 7    and     ( )
3

xf x x f x− −
= + = . 

   
Step #5: Graph each equation on the graphing calculator. 

 
  Press Y= and enter the following, then press GRAPH  or 
  ZOOM 6:ZStandard. 
 



1

2

3

Y X
Y 3X 7
Y (X 7) / 3

=
= +
= −

 

 

 
 

Example #2: For 2( ) 6 8f x x x= − + , find 1( )f x−  and graph. 
 

Step #1: Recall that ( )y f x= , so we can rewrite our function as:  2 6 8y x x= − + . 
 

Step #2: Solve for x . Recall from Algebra II that in order to solve the above equation 
for x , we use the method of, “Completing the Square”. 

 

  

2

2

2

2

6 8

6      8

6 9 8 9

    ( 3) ( 1)

         3 ( 1)

              3 ( 1)

x x y

x x y

x x y

x y

x y

x y

− + =

− = −

− + = − +

− = +

− = ± +

= ± +

 

 
Step #3: Interchange x and y   3 ( 1) ( )y x g x= ± + =  

 
Recall that an equation of this form, ( )± , must be graphed as a restricted 
function. For our purposes, we will choose, 3 ( 1) ( )y x g x= + + = . 

 
 
 
 
 
 



Step #4: Verify that ( ) 1( )g x f x−=  
 

 (1.) find: ( ( ))f g x  
 

2(3 1) (3 1) 6(3 1) 8f x x x= + + = + + − + + +  
 

9 6 1 1 18 6 1 8x x xx= + + + + − − + + =  
 

Note: Although we will review how to FOIL radical quantities later, students should 
possess a familiarity with this process from Algebra II. 

 
(2.) find: ( ( ))g f x  
 

2 2 2( 6 8) 3 ( 6 8) 1 3 6 9g x x x x x x= − + = + − + + = + − +  
 

23 ( 3) 3 ( 3)x x x= + − = + − =  
 

Note: Students should also possess knowledge on how to factor “trinomial squares”. 
 

Therefore 2 1( ) 6 8    and     ( ) 3 ( 1)f x x x f x x−= − + = + +  (under restrictions) 
 

Step #5: Graph each equation on the graphing calculator. Enter the following 
into Y= , then graph: 

 
1

2
2

3

Y X

Y X 6X 8

Y 3 (X+1)

=

= − +

= +

 

 

 
Notice that ( )f x and 1( )f x− intersect at two points and that one of those two points is 
on the line of symmetry. If all points of intersection between ( )f x and 1( )f x− occur 
on the line of symmetry, the ( )f x and 1( )f x− have a special relationship which we 
will examine next. 



“One-to-One” Functions 
 
As noted in our previous example, "Finding Inverse of a Function" link, at least one point of 
intersection between 2 1( ) 6 8 and ( ) 3 ( 1)f x x x f x x−= − + = + + occurs on the line of 
symmetry, y x= . However, another intersection does not. This can be one way to determine that 
the two functions are not ‘one-to-one’ (although one-to-one functions can have intersection 
points off the line, y x= ). This graphical interpretation is only one aspect of what it means for a 
function to be a ‘one-to-one’ function. 
 

One-to-One Functions 
 

Let ( )f f x= ∈ be a real valued function and 1 1( )f f x− −= be the inverse of f . 
 
f is a ‘one-to-one’ function if for every fx D∈  and every fy R∈ , 1fy D −∈ and 

1fx R −∈ . 

 
In other words, if all of the domain of  f is the range of 1f − , and of the range of f is the 
domain of 1f − , then the two functions are ‘one-to-one’ (denoted, “1-1”). 

 
The fact that the graph in the second example in the link to "Finding Inverse of a 
Function" (shown below) was not 1-1can now be explained from the definition.  

 
2 1( ) 6 8    and     ( ) 3 ( 1)f x x x f x x−= − + = + +  (under restrictions) 

 
 

1
2

2

3

Y X

Y X 6X 8

Y 3 (X+1)

=

= − +

= +

 

 

 
 

For 2( ) 6 8f x x x= − − , we have ( , )  and  [ 1, )x yD R= −∞ ∞ = − ∞ . However, for  
1( ) 3 ( 1)f x x− = + + , we have 1 1[ 1, ) and  [3, ) ff fD R D− −= − ∞ = ∞ ≠  



(Note: These Domain and Range values can be found using techniques from a previous 
unit.) 
 
However if we restrict fD , we can form a restricted, 1-1 function for ( )f x . Let 

[3, )fD = ∞ . We now graph the two functions in the following way on the calculator.  
 

Example #1:  To have the TI-83+ graph restrictions do the following:   In Y= change 2Y  
by typing: 

 

2
2

1

3

Y (X 6X 8)(

Y X

Y

3 X)

3 1)

*

(X+

=

= +

= − + ≤  

 
*The '  '≤ command is found by pressing, 2nd , MATH   

 

 
 

Example #2: Let 1( )
2

f x
x

=
+

 

 
(1.) State: fD and fR  

(2.) Find: 1( )f x−  
(3.) Determine if ( )f x is 1-1. If  ( )f x is not 1-1, restrict either or both 

the fD and fR to make ( )f x ,1-1. 

(4.) Graph both ( )f x and 1( )f x− on the same display along with y x= (the line of 
symmetry). 

 
Part #1: State: fD and fR . 

 
(1.) Clearly, 2x ≠ − as this would cause the denominator to equal zero. 

Therefore 2x = −  is restricted from the domain of ( )f x . All other real numbers 
can however be used as a value for x in the denominator without causing 
problems.  

  



Conclusion: ( ,  2) ( 2,  )fD = −∞ − − ∞∪  
 

(2.) To find the range we will examine this function on the graphing calculator. 
 

Clear other graphs and then enter 1Y 1/( 2)x= + , then press GRAPH  

or ZOOM 6  
 

 
 

The calculator will not display the entire graph and may appear to connect the 
curve at 2x = − , which we know, is impossible. 

 
Press TRACE  then type " 2"− ENTER . At the bottom of the display the 
calculator displays " 2"− for x , but there is no y -value given. In addition, your 
tracing cursor is no longer on the graph. Although the calculator may not graph 
this function properly, it does ‘know’ that the function is undefined at 2x = − . 

 
Press, TRACE again and use your right and left arrows to find your cursor.  Type 
the following numbers in order, pressing ENTER after each one. Record or make 
note of the y -values that result from each new number. 

 
  Type 2.001−   y = ? 
  Type 2.0001−   y = ? 
  Type 2.00001−  y = ? 
  Type 2.000001−  y = ? 
 
What do you notice about your y -values as you allow x to come close to 2−  from 
the left of 2− ? 
 
 
 
 
 
 
 
 



Now type the following numbers in order and press ENTER after each one. 
Record or make note of the y -values that result from each new number. 

 
   Type 1.99−   y = ? 
  Type 1.999−   y = ? 
  Type 1.9999−   y = ? 
  Type 1.99999−  y = ? 

 
What do you notice about your y -values as you allow x to come closer to 2−  from 
the right of 2− ? 

 
What is not clear about the calculator’s graph, but what is clear about these 

numerical results, is that at 2x = − , the graph of 1( )
2

f x
x

=
+

increases to ∞ on 

one side of 2x = − and decreases to −∞ on the other side. In addition, if we 
examine the graph around the x - axis we see that to the right of 2x = − , the 
function values always remain above the axis, while to the left of 2x = − , the 
function values are always negative and below the axis. This occurs because the 

expression 1 0
2x
>

+
for all 2x > − , and the expression is also 0<  for all 

2x < − (test a few x -values on your own to see that this is true). 
 

Conclusion: ( ,  0) (0,  )fR = −∞ ∞∪  
 

Part #2: Find 1( )f x−  

 (1.) Solve 1( )
2

f x
x

=
+

for x : ( recall: ( )y f x= ) . 

 
1           

2

( 2) 1

  2 1

          1 2

1 2           

y
x

y x

xy y

xy y

yx
y

=
+

+ =

+ =

= −

−
=

 

  
 
 
 
 



(2.) Interchange y x=  
 

1 2 ( )xy g x
x
−

= =  

 
 (3.) Verify 1( ) ( )g x f x−=  ( This is left for you to verify on your own. ) 

 
Part #3: Determine if ( ) is 1 1f x −  

Using similar methods in Part #1 above, graph 1 2xy
x
−

=  on your calculator and 

determine its domain and range. We conclude that 1 ( ,  0) (0,  )fD − = −∞ ∞∪ and 

1 ( , 2) ( 2, )fR − = −∞ − − ∞∪ . Therefore we conclude that 1( )
2

f x
x

=
+

 is1-1. 

 
Part #4: Graph: ( )f x and 1( )f x−  
 
Choose an appropriate window until your graph is similar to the one shown. 

 

 
All points of intersection for the two curves occur on y x= . The extra vertical line that 
may appear indicates the graph is undefined at 2x = − . 


