Math 8 – Short Cycle Assessment #1

The following assessment will be covering the following standards:

STANDARD DESCRIPTION	ACADEMIC	RESOURCES
	VOCABULARY	
8.NS.A.1 Know that there are numbers	rational number,	Pearson Digits Program
that are not rational, and approximate	repeating decimal,	
them by rational numbers.	terminating decimal,	AIR Practice Questions
	irrational number,	
8.NS.1 Know that real numbers are	perfect square, real	Khan Academy
either rational or irrational.	numbers, square root	
Understand informally that every		Kuta Software
number has a decimal expansion which		
is repeating, terminating, or is not-		
repeating and non-terminating.		
8.NS.A.2 Use rational approximations	rational number,	Pearson Digits Program
of irrational numbers to compare the	repeating decimal,	
size of irrational numbers, locate them	terminating decimal,	AIR Practice Questions
approximately on a number line	irrational number,	
diagram, and estimate the value of	perfect square, real	Khan Academy
expressions (e.g., $\pi 2$). For example, by	numbers, square root	V C C
truncating the decimal expansion of $\sqrt{2}$,		Kuta Software
show that $\sqrt{2}$ is between 1 and 2, then		
between 1.4 and 1.5, and explain how to		
continue on to get better		
approximations.		

8.EE.C.7 Solve linear equations in one	isolate, like terms,	Pearson Digits Program
variable. a. Give examples of linear	Distributive	
equations in one variable with one	Property, least	AIR Practice Questions
solution, infinitely many solutions, or	common multiple,	
no solutions. Show which of these	no solution,	Khan Academy
possibilities is the case by successively	infinitely many	
transforming the given equation into	solutions	Kuta Software
simpler forms, until an equivalent		
equation of the form $x = a$, $a = a$, or $a =$		
b results (where a and b are different		
numbers).		
8.EE.C.7b Solve linear equations with	perfect square, square	Pearson Digits Program
rational number coefficients, including	root, perfect cube,	
equations whose solutions require	cube root, power of a	AIR Practice Questions
expanding expressions using the	power, power of a	
distributive property and collecting like	product, power	Khan Academy
terms.	of a quotient, Zero	
	Exponent Property,	Kuta Software
	Negative Exponent	
	Property scientific	
	notation, standard	
	form	
8.EE.A1 Know and apply the properties	perfect square, square	Pearson Digits Program
of integer exponents to generate	root, perfect cube,	
equivalent numerical expressions. For	cube root, power of a	AIR Practice Questions
example, $32 \times 3-5 = 3-3 = 1/33 = 1/27$.	power, power of a	
	product, power	Khan Academy
8.EE.A2 Use square root and cube root	of a quotient, Zero	
symbols to represent solutions to	Exponent Property,	Kuta Software
equations of the form $x^2 = p$ and $x^3 = p$,	Negative Exponent	
where p is a positive rational number.	Property scientific	
Evaluate square roots of small perfect	notation, standard	
1 1	form	

Please read the following before you begin:

1.) To avoid losing any work, make sure you click the SAVE button after each question.

2.) When you are finished with your assessment, click ALL FINISHED! REVIEW MY ANSWERS.

3.) When you are satisfied with your work, click LOOKS OK! SEND TO MY TEACHER.