

The following assessment will be covering the following standards:

STANDARD DESCRIPTION	ACADEMIC VOCABULARY	RESOURCES
NS.1—Apply and extend previous	Additive Inverse	AIR Test (Ohio,
understandings of addition and		Florida, Utah, Arizona,
subtraction to add and subtract rational numbers; represent addition and	Integer	Oregon, Washington, South Dakota, Idaho,
subtraction on a horizontal or vertical number line diagram.	Rational Number	Iowa)
	Absolute Value	Kuta Software
NS.1.A—Describe situations in which		
opposite quantities combine to make 0.	Number Line	Khan Academy
For example, a hydrogen atom has 0		
charge because its two constituents are	Difference	JCESC Website
oppositely charged.		
	Sum	
NS.1.B —Understand $p + q$ as the		
number located a distance $ q $ from p , in	Opposites	
the positive or negative direction		
depending on whether q is positive or		
negative. Show that a number and its		
opposite have a sum of 0 (are additive		
inverses). Interpret sums of rational		
numbers by describing real-world		
contexts.		

NS.1.C —Understand subtraction of rational numbers as adding the additive inverse, $p - q = p + (-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. NS.1.D —Apply properties of operations as strategies to add and subtract rational numbers.	Additive Inverse Integer
NS.2—Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. NS.2.A—Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (- 1)(-1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real- world contexts. NS.2.B—Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If <i>p</i> and <i>q</i> are integers, then - (p/q) = (-p)/q = p/(-q). Interpret quotients of rational numbers by describing real-world contexts. NS.2.C—Apply properties of operations as strategies to multiply and divide rational numbers.	Rational NumberAbsolute ValueNumber LineDifferenceSumOpposites

NS.1.D—Apply properties of	Rational Number	AIR Test (Ohio,
operations as strategies to add and		Florida, Utah, Arizona,
subtract rational numbers.	Terminating/	Oregon, Washington,
	Repeating Decimal	South Dakota, Idaho,
NS.2.C —Apply properties of	Repeating Deemia	Iowa)
operations as strategies to multiply and	Fraction	10 ((4))
divide rational numbers.		Kuta Software
	Decimal	Itula Software
NS.2.D —Convert a rational number to		Khan Academy
a decimal using long division; know	Numerator	Ithan / Yeadeniy
that the decimal form of a rational		JCESC Website
number terminates in 0s or eventually	Denominator	JCESC Website
	Denominator	
repeats.	Complex Enertian	
NS.3—Solve real-world and	Complex Fraction	
	Designess	
mathematical problems involving the	Reciprocal	
four operations with rational numbers.		
RP.1 —Compute unit rates associated	Unit Ratio	AIR Test (Ohio,
with ratios of fractions, including ratios		Florida, Utah, Arizona,
of lengths, areas and other quantities	Ratio	Oregon, Washington,
measured in like or different units. For	D	South Dakota, Idaho,
example, if a person walks 1/2 mile in	Proportion	Iowa)
each 1/4 hour, compute the unit rate as		
the complex fraction 1/2/1/4 miles per	Proportional	Kuta Software
hour, equivalently 2 miles per hour.	Relationship	Khan Academy
RP.2 —Recognize and represent	Constant of	JCESC Website
proportional relationships between	Proportionality	JELBE Website
quantities.	Toportionanty	
quantities.	Each	
RP.2.A —Decide whether two quantities		
are in a proportional relationship, e.g.,	Equivalent	
by testing for equivalent ratios in a table	Corresponding Sides	
or graphing on a coordinate plane and	Corresponding Sides	
observing whether the graph is a	Companding	
straight line through the origin.	Corresponding	
DD 2 D Identify the car tout of	Angles	
RP.2.B —Identify the constant of	Similar Firm	
proportionality (unit rate) in tables,	Similar Figures	
graphs, equations, diagrams, and verbal	G 1	
	Scale	

descriptions of proportional relationships.	Right Triangles	
	Special Quadrilaterals	
RP.2.B —Identify the constant of	Ordered Pairs	AIR Test (Ohio,
proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal	Origin	Florida, Utah, Arizona, Oregon, Washington,
descriptions of proportional relationships.	Percent	South Dakota, Idaho, Iowa)
RP.2.C —Represent proportional relationships by equations. <i>For</i>	Equations	Kuta Software
example, if total cost t is proportional to the number n of items purchased at a	Interest Rate	Khan Academy
constant price p, the relationship between the total cost and the number	% Change/Error	JCESC Website
of items can be expressed as $t = pn$.	Markup/Markdown	
RP.2.D —Explain what a point (x, y) on	Points for Constant of	
the graph of a proportional relationship means in terms of the situation, with	Proportionality	
special attention to the points $(0, 0)$ and		
(1, r) where r is the unit rate.		
RP.3 —Use proportional relationships to		
solve multistep ratio and percent problems. Examples: simple interest,		
tax, markups and markdowns, gratuities		
and commissions, fees, percent increase and decrease, percent error.		

Please read the following before you begin:

1.) To avoid losing any work, make sure you click the SAVE button after each question.

2.) When you are finished with your assessment, click ALL FINISHED! REVIEW MY ANSWERS.

3.) When you are satisfied with your work, click LOOKS OK! SEND TO MY TEACHER.