QUADRATIC FUNCTIONS

Quadratic functions have important applications in science and engineering. For example, the parabolic path of a bouncing ball can be described by a quadratic function. This unit will introduce you to quadratic functions and how to solve quadratic equations.

Introduction to Quadratic Functions
Solving Quadratic Equations
The Pythagorean Theorem

I ntroduction to Quadratic Functions

Quadratic functions have the form $f(x)=a x^{2}+b x+c$ where the highest exponent is 2.

$$
\begin{aligned}
& a x^{2} \text { is the quadratic term } \\
& b x \text { is the linear term } \\
& c \text { is the constant term }
\end{aligned}
$$

Are the following functions, quadratic functions?

$$
\begin{array}{ll}
f(x)=7 x^{2}-3 x+4 & \text { yes, the highest exponent is } 2 \\
g(x)=3 x^{2}-5 & \text { yes, the highest exponent is } 2 \\
h(x)=4 x^{3}-2 x^{2}+x-8 & \text { no, the highest exponent is } 3 \\
j(x)=6 x+7 & \text { no, the highest exponent is } 1
\end{array}
$$

parabola: the graph of a quadratic function

axis of symmetry: a line that divides the parabola into two parts that are mirror images of each other.
vertex: either the lowest point on the graph or the highest point on the graph.
domain of any quadratic function: the set of all real numbers.
range: all real numbers \geq the minimum value of the function (when opening up) or all real numbers \leq the maximum value of the function (when opening down).

If given a function, such as $f(x)=(4 x+3)(x-6)$, and asked to express it into quadratic form, use FOIL (First Outer Inner Last) multiplication to write it in the form $a x^{2}+b x+c$.

$$
\begin{aligned}
& \begin{array}{c}
\text { F } \\
(4 x \cdot x)+(4 x \cdot-6)+(3 \cdot x)+\left(3^{2} \cdot-6\right)
\end{array} \\
& 4 x^{2}-24 x+3 x-18 \quad \text { combine like terms } \\
& 4 x^{2}-21 x-18 \\
& a=4 \quad b=-21 \quad c=-18
\end{aligned}
$$

Example \#2: Put the following function in quadratic form:

$$
\begin{aligned}
& f(x)=(3 x+9)(4 x-6) \text { Remember to FOIL the terms } \\
& (3 x \cdot 4 x)+(3 x \cdot-6)+(9 \cdot 4 x)+(9 \cdot-6) \\
& 12 x^{2}-18 x+36 x-54 \text { combine like terms } \\
& 12 x^{2}+18 x-54 \\
& a=12 \quad b=18 \quad c=-54
\end{aligned}
$$

By examining " a " in $f(x)=a x^{2}+b x+c$, you can identify whether the function has a maximum value (opens up) or a minimum value (opens down).

If a >0, the graph opens up and the y-coordinate of the vertex is the minimum value of the function f.

If a <0, the graph opens down and the y-coordinate of the vertex is the maximum value of the function f.

Example \#3:
a.) $f(x)=-5 x+2 x^{2}+2$
b.) $g(x)=7-6 x-2 x^{2}$
*put equations in descending order (largest exponent first)

Since " a " is positive, this means that the graph opens up and has a minimum at the vertex.

$g(x)=-2 x^{2}-6 x+7$

Since " a " is negative, this means that the graph opens down and has a maximum at the vertex.

Solving Quadratic Equations

To solve quadratic equations

1) isolate the quadratic term
2) find the square root of each side

Example \#1: Solve for $x: 4 x^{2}+13=253$

$$
\begin{array}{rlrl}
4 x^{2}+13 & =253 \\
-13 & -13 \\
\frac{4 x^{2}}{4} & =\frac{240}{4} \\
x^{2} & =60 \\
\sqrt{x^{2}} & =\sqrt{60} & \\
x^{2} & = \pm \sqrt{60} \quad & \\
\text { If a number is }>\mathbf{0}, \text { then it has two } \\
& \approx \pm 7.75 \quad \begin{array}{l}
\text { square roots, one is positive }(+) \text { the } \\
\text { other negative }(-) .
\end{array}
\end{array}
$$

Example \#2: Solve for $x: 9(x-2)^{2}=121$

$$
\begin{aligned}
& \frac{9(x-2)^{2}}{9}=\frac{121}{9} \\
& (x-2)^{2}=\frac{121}{9} \\
& \sqrt{(x-2)^{2}}=\sqrt{\frac{121}{9}} \\
& (x-2)= \pm \frac{11}{3} \\
& x=\frac{11}{3}+2 \quad x=-\frac{11}{3}+2 \\
& x=\frac{17}{3} \quad x=-\frac{5}{3}
\end{aligned}
$$

The Pythagorean Theorem

If $\triangle A B C$ is a right triangle with a right angle at C, then $a^{2}+b^{2}=c^{2}$.

Example \#1:
$(5.3)^{2}+(8.4)^{2}=c^{2}$

$$
\begin{aligned}
28.09+70.56 & =c^{2} \\
98.65 & =c^{2} \\
\sqrt{98.65} & =\sqrt{c^{2}} \\
9.9 & \approx c
\end{aligned}
$$

