QUADRATIC FUNCTIONS

Quadratic functions have important applications in science and engineering. For example, the parabolic path of a bouncing ball can be described by a quadratic function. This unit will introduce you to quadratic functions and how to solve quadratic equations.

Introduction to Quadratic Functions

Solving Quadratic Equations

The Pythagorean Theorem

Introduction to Quadratic Functions

Quadratic functions have the form $f(x) = ax^2 + bx + c$ where the highest exponent is 2.

 ax^2 is the quadratic term

bx is the linear term

c is the constant term

Are the following functions, quadratic functions?

 $f(x) = 7x^2 - 3x + 4$ yes, the highest exponent is 2 $g(x) = 3x^2 - 5$ yes, the highest exponent is 2 $h(x) = 4x^3 - 2x^2 + x - 8$ no, the highest exponent is 3j(x) = 6x + 7no, the highest exponent is 1

parabola: the graph of a quadratic function

axis of symmetry: a line that divides the parabola into two parts that are mirror images of each other.

vertex: either the lowest point on the graph or the highest point on the graph.

domain of any quadratic function: the set of all real numbers.

range: all real numbers \geq the minimum value of the function (when opening up) or all real numbers \leq the maximum value of the function (when opening down).

If given a function, such as f(x) = (4x + 3)(x - 6), and asked to express it into quadratic form, use FOIL (First Outer Inner Last) multiplication to write it in the form $ax^2 + bx + c$.

Example #2: Put the following function in quadratic form:

f(x) = (3x + 9)(4x - 6) Remember to FOIL the terms $(3x \cdot 4x) + (3x \cdot -6) + (9 \cdot 4x) + (9 \cdot -6)$ $12x^{2} - 18x + 36x - 54$ combine like terms $12x^{2} + 18x - 54$ a = 12 b = 18 c = -54

By examining "a" in $f(x) = ax^2 + bx + c$, you can identify whether the function has a maximum value (opens up) or a minimum value (opens down).

If a > 0, the graph opens up and the *y*-coordinate of the vertex is the minimum value of the function *f*.

If a < 0, the graph opens down and the *y*-coordinate of the vertex is the maximum value of the function f.

Example #3: a.) $f(x) = -5x + 2x^2 + 2$

b.)
$$g(x) = 7 - 6x - 2x^2$$

*put equations in descending order (largest exponent first)

$$f(x) = 2x^2 - 5x + 2$$

Since "*a*" is positive, this means that the graph opens up and has a minimum at the vertex.

Since "*a*" is negative, this means that the graph opens down and has a maximum at the vertex.

Solving Quadratic Equations

To solve quadratic equations

- 1) isolate the quadratic term
- 2) find the square root of each side

Example #1: Solve for *x*: $4x^2 + 13 = 253$

$$4x^{2} + 13 = 253$$
$$-13 - 13$$
$$\frac{4x^{2}}{4} = \frac{240}{4}$$
$$x^{2} = 60$$
$$\sqrt{x^{2}} = \sqrt{60}$$
$$x^{2} = \pm\sqrt{60}$$
$$\approx \pm 7.75$$

If a number is > 0, then it has two square roots, one is positive (+) the other negative (–).

Example #2: Solve for *x*:
$$9(x-2)^2 = 121$$

$$\frac{9(x-2)^2}{9} = \frac{121}{9}$$
$$(x-2)^2 = \frac{121}{9}$$
$$\sqrt{(x-2)^2} = \sqrt{\frac{121}{9}}$$
$$(x-2) = \pm \frac{11}{3}$$
$$x = \frac{11}{3} + 2 \qquad x = -\frac{11}{3} + 2$$
$$x = \frac{17}{3} \qquad x = -\frac{5}{3}$$

The Pythagorean Theorem

If $\triangle ABC$ is a right triangle with a right angle at C, then $a^2 + b^2 = c^2$.

